OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
clargv.f
Go to the documentation of this file.
1*> \brief \b CLARGV generates a vector of plane rotations with real cosines and complex sines.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLARGV + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clargv.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clargv.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clargv.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
22*
23* .. Scalar Arguments ..
24* INTEGER INCC, INCX, INCY, N
25* ..
26* .. Array Arguments ..
27* REAL C( * )
28* COMPLEX X( * ), Y( * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CLARGV generates a vector of complex plane rotations with real
38*> cosines, determined by elements of the complex vectors x and y.
39*> For i = 1,2,...,n
40*>
41*> ( c(i) s(i) ) ( x(i) ) = ( r(i) )
42*> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 )
43*>
44*> where c(i)**2 + ABS(s(i))**2 = 1
45*>
46*> The following conventions are used (these are the same as in CLARTG,
47*> but differ from the BLAS1 routine CROTG):
48*> If y(i)=0, then c(i)=1 and s(i)=0.
49*> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
50*> \endverbatim
51*
52* Arguments:
53* ==========
54*
55*> \param[in] N
56*> \verbatim
57*> N is INTEGER
58*> The number of plane rotations to be generated.
59*> \endverbatim
60*>
61*> \param[in,out] X
62*> \verbatim
63*> X is COMPLEX array, dimension (1+(N-1)*INCX)
64*> On entry, the vector x.
65*> On exit, x(i) is overwritten by r(i), for i = 1,...,n.
66*> \endverbatim
67*>
68*> \param[in] INCX
69*> \verbatim
70*> INCX is INTEGER
71*> The increment between elements of X. INCX > 0.
72*> \endverbatim
73*>
74*> \param[in,out] Y
75*> \verbatim
76*> Y is COMPLEX array, dimension (1+(N-1)*INCY)
77*> On entry, the vector y.
78*> On exit, the sines of the plane rotations.
79*> \endverbatim
80*>
81*> \param[in] INCY
82*> \verbatim
83*> INCY is INTEGER
84*> The increment between elements of Y. INCY > 0.
85*> \endverbatim
86*>
87*> \param[out] C
88*> \verbatim
89*> C is REAL array, dimension (1+(N-1)*INCC)
90*> The cosines of the plane rotations.
91*> \endverbatim
92*>
93*> \param[in] INCC
94*> \verbatim
95*> INCC is INTEGER
96*> The increment between elements of C. INCC > 0.
97*> \endverbatim
98*
99* Authors:
100* ========
101*
102*> \author Univ. of Tennessee
103*> \author Univ. of California Berkeley
104*> \author Univ. of Colorado Denver
105*> \author NAG Ltd.
106*
107*> \ingroup complexOTHERauxiliary
108*
109*> \par Further Details:
110* =====================
111*>
112*> \verbatim
113*>
114*> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
115*>
116*> This version has a few statements commented out for thread safety
117*> (machine parameters are computed on each entry). 10 feb 03, SJH.
118*> \endverbatim
119*>
120* =====================================================================
121 SUBROUTINE clargv( N, X, INCX, Y, INCY, C, INCC )
122*
123* -- LAPACK auxiliary routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 INTEGER INCC, INCX, INCY, N
129* ..
130* .. Array Arguments ..
131 REAL C( * )
132 COMPLEX X( * ), Y( * )
133* ..
134*
135* =====================================================================
136*
137* .. Parameters ..
138 REAL TWO, ONE, ZERO
139 parameter( two = 2.0e+0, one = 1.0e+0, zero = 0.0e+0 )
140 COMPLEX CZERO
141 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
142* ..
143* .. Local Scalars ..
144* LOGICAL FIRST
145 INTEGER COUNT, I, IC, IX, IY, J
146 REAL CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
147 $ SAFMN2, SAFMX2, SCALE
148 COMPLEX F, FF, FS, G, GS, R, SN
149* ..
150* .. External Functions ..
151 REAL SLAMCH, SLAPY2
152 EXTERNAL slamch, slapy2
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC abs, aimag, cmplx, conjg, int, log, max, real,
156 $ sqrt
157* ..
158* .. Statement Functions ..
159 REAL ABS1, ABSSQ
160* ..
161* .. Save statement ..
162* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
163* ..
164* .. Data statements ..
165* DATA FIRST / .TRUE. /
166* ..
167* .. Statement Function definitions ..
168 abs1( ff ) = max( abs( real( ff ) ), abs( aimag( ff ) ) )
169 abssq( ff ) = real( ff )**2 + aimag( ff )**2
170* ..
171* .. Executable Statements ..
172*
173* IF( FIRST ) THEN
174* FIRST = .FALSE.
175 safmin = slamch( 's' )
176 EPS = SLAMCH( 'e' )
177 SAFMN2 = SLAMCH( 'b' )**INT( LOG( SAFMIN / EPS ) /
178 $ LOG( SLAMCH( 'b' ) ) / TWO )
179 SAFMX2 = ONE / SAFMN2
180* END IF
181 IX = 1
182 IY = 1
183 IC = 1
184 DO 60 I = 1, N
185 F = X( IX )
186 G = Y( IY )
187*
188* Use identical algorithm as in CLARTG
189*
190 SCALE = MAX( ABS1( F ), ABS1( G ) )
191 FS = F
192 GS = G
193 COUNT = 0
194.GE. IF( SCALESAFMX2 ) THEN
195 10 CONTINUE
196 COUNT = COUNT + 1
197 FS = FS*SAFMN2
198 GS = GS*SAFMN2
199 SCALE = SCALE*SAFMN2
200.GE..AND..LT. IF( SCALESAFMX2 COUNT 20 )
201 $ GO TO 10
202.LE. ELSE IF( SCALESAFMN2 ) THEN
203.EQ. IF( GCZERO ) THEN
204 CS = ONE
205 SN = CZERO
206 R = F
207 GO TO 50
208 END IF
209 20 CONTINUE
210 COUNT = COUNT - 1
211 FS = FS*SAFMX2
212 GS = GS*SAFMX2
213 SCALE = SCALE*SAFMX2
214.LE. IF( SCALESAFMN2 )
215 $ GO TO 20
216 END IF
217 F2 = ABSSQ( FS )
218 G2 = ABSSQ( GS )
219.LE. IF( F2MAX( G2, ONE )*SAFMIN ) THEN
220*
221* This is a rare case: F is very small.
222*
223.EQ. IF( FCZERO ) THEN
224 CS = ZERO
225 R = SLAPY2( REAL( G ), AIMAG( G ) )
226* Do complex/real division explicitly with two real
227* divisions
228 D = SLAPY2( REAL( GS ), AIMAG( GS ) )
229 SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
230 GO TO 50
231 END IF
232 F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
233* G2 and G2S are accurate
234* G2 is at least SAFMIN, and G2S is at least SAFMN2
235 G2S = SQRT( G2 )
236* Error in CS from underflow in F2S is at most
237* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
238* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
239* and so CS .lt. sqrt(SAFMIN)
240* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
241* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
242* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
243 CS = F2S / G2S
244* Make sure abs(FF) = 1
245* Do complex/real division explicitly with 2 real divisions
246.GT. IF( ABS1( F )ONE ) THEN
247 D = SLAPY2( REAL( F ), AIMAG( F ) )
248 FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
249 ELSE
250 DR = SAFMX2*REAL( F )
251 DI = SAFMX2*AIMAG( F )
252 D = SLAPY2( DR, DI )
253 FF = CMPLX( DR / D, DI / D )
254 END IF
255 SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
256 R = CS*F + SN*G
257 ELSE
258*
259* This is the most common case.
260* Neither F2 nor F2/G2 are less than SAFMIN
261* F2S cannot overflow, and it is accurate
262*
263 F2S = SQRT( ONE+G2 / F2 )
264* Do the F2S(real)*FS(complex) multiply with two real
265* multiplies
266 R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
267 CS = ONE / F2S
268 D = F2 + G2
269* Do complex/real division explicitly with two real divisions
270 SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
271 SN = SN*CONJG( GS )
272.NE. IF( COUNT0 ) THEN
273.GT. IF( COUNT0 ) THEN
274 DO 30 J = 1, COUNT
275 R = R*SAFMX2
276 30 CONTINUE
277 ELSE
278 DO 40 J = 1, -COUNT
279 R = R*SAFMN2
280 40 CONTINUE
281 END IF
282 END IF
283 END IF
284 50 CONTINUE
285 C( IC ) = CS
286 Y( IY ) = SN
287 X( IX ) = R
288 IC = IC + INCC
289 IY = IY + INCY
290 IX = IX + INCX
291 60 CONTINUE
292 RETURN
293*
294* End of CLARGV
295*
296 END
float cmplx[2]
Definition pblas.h:136
subroutine clargv(n, x, incx, y, incy, c, incc)
CLARGV generates a vector of plane rotations with real cosines and complex sines.
Definition clargv.f:122
#define max(a, b)
Definition macros.h:21