OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
multi_evolve_global.F
Go to the documentation of this file.
1Copyright> OpenRadioss
2Copyright> Copyright (C) 1986-2025 Altair Engineering Inc.
3Copyright>
4Copyright> This program is free software: you can redistribute it and/or modify
5Copyright> it under the terms of the GNU Affero General Public License as published by
6Copyright> the Free Software Foundation, either version 3 of the License, or
7Copyright> (at your option) any later version.
8Copyright>
9Copyright> This program is distributed in the hope that it will be useful,
10Copyright> but WITHOUT ANY WARRANTY; without even the implied warranty of
11Copyright> MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12Copyright> GNU Affero General Public License for more details.
13Copyright>
14Copyright> You should have received a copy of the GNU Affero General Public License
15Copyright> along with this program. If not, see <https://www.gnu.org/licenses/>.
16Copyright>
17Copyright>
18Copyright> Commercial Alternative: Altair Radioss Software
19Copyright>
20Copyright> As an alternative to this open-source version, Altair also offers Altair Radioss
21Copyright> software under a commercial license. Contact Altair to discuss further if the
22Copyright> commercial version may interest you: https://www.altair.com/radioss/.
23!||====================================================================
24!|| multi_evolve_global ../engine/source/multifluid/multi_evolve_global.F
25!||--- called by ------------------------------------------------------
26!|| multi_timeevolution ../engine/source/multifluid/multi_timeevolution.F
27!||--- uses -----------------------------------------------------
28!|| elbufdef_mod ../common_source/modules/mat_elem/elbufdef_mod.F90
29!|| initbuf_mod ../engine/share/resol/initbuf.F
30!|| multi_fvm_mod ../common_source/modules/ale/multi_fvm_mod.F90
31!||====================================================================
32 SUBROUTINE multi_evolve_global(TIMESTEP, NG, ELBUF_TAB,
33 . IPARG, ITASK, IXS, IXQ, IXTG, MULTI_FVM, GRAVITY, WFEXT)
34C-----------------------------------------------
35C M o d u l e s
36C-----------------------------------------------
37 USE initbuf_mod
38 USE elbufdef_mod
39 USE multi_fvm_mod
40C-----------------------------------------------
41C I m p l i c i t T y p e s
42C-----------------------------------------------
43#include "implicit_f.inc"
44C-----------------------------------------------
45C C o m m o n B l o c k s
46C-----------------------------------------------
47#include "com01_c.inc"
48#include "com06_c.inc"
49#include "param_c.inc"
50C-----------------------------------------------
51C D u m m y A r g u m e n t s
52C-----------------------------------------------
53 my_real, INTENT(IN) :: timestep
54 INTEGER, INTENT(IN) :: NG
55 TYPE(elbuf_struct_), TARGET, DIMENSION(NGROUP) :: ELBUF_TAB
56 INTEGER, INTENT(IN) :: IPARG(NPARG, *)
57 INTEGER, INTENT(IN) :: ITASK ! SMP TASK
58 INTEGER, INTENT(IN), TARGET :: IXS(NIXS, *), IXQ(NIXQ, *), IXTG(NIXTG, *)
59 TYPE(multi_fvm_struct), INTENT(INOUT) :: MULTI_FVM
60 my_real, INTENT(IN) :: gravity(4, *)
61 DOUBLE PRECISION,INTENT(INOUT) :: WFEXT
62C-----------------------------------------------
63C L o c a l V a r i a b l e s
64C-----------------------------------------------
65 TYPE(g_bufel_), POINTER :: GBUF
66 INTEGER :: II, I, J, ITY, NEL, NFT, ISOLNOD
67 INTEGER :: IPLA, NODEID, NVERTEX
68 my_real :: rho, etot, vel2, vol, sumflux(5)
69 my_real :: vii(5), gravii(3), pres, vx, vy, vz, wext
70 INTEGER :: NB_FACE, NB_NODE, NODE_LIST(8)
71 INTEGER, DIMENSION(:, :), POINTER :: IX
72 DOUBLE PRECISION :: WFEXTT
73C-----------------------------------------------
74C B e g i n n i n g o f s u b r o u t i n e
75C-----------------------------------------------
76 gbuf =>elbuf_tab(ng)%GBUF
77 nel = iparg(2, ng)
78 nft = iparg(3, ng)
79 ity = iparg(5, ng)
80 isolnod = iparg(28, ng)
81 nb_face = 6
82 wfextt = zero
83 ix =>ixs(1:nixs, 1 + nft : nel + nft)
84 IF (isolnod == 8) THEN
85 nb_node = 8
86 DO j = 1, nb_node
87 node_list = j + 1
88 ENDDO
89 ELSE
90 nb_node = 4
91 node_list(1) = 2
92 node_list(2) = 4
93 node_list(3) = 7
94 node_list(4) = 6
95 ENDIF
96
97 IF (multi_fvm%SYM /= 0) THEN
98 IF (ity == 2) THEN
99C QUADS
100 nb_face = 4
101 nb_node = 4
102 node_list(1) = 2
103 node_list(2) = 3
104 node_list(3) = 4
105 node_list(4) = 5
106
107 ix => ixq(1:nixq, 1 + nft : nel + nft)
108 ELSEIF (ity == 7) THEN
109C TRIANGLES
110 nb_face = 3
111 nb_node = 3
112 node_list(1) = 2
113 node_list(2) = 3
114 node_list(3) = 4
115 ix => ixtg(1:nixtg, 1 + nft : nel + nft)
116 ENDIF
117 ENDIF
118
119C Update global quantities
120 DO ii = 1, nel
121 i = ii + nft
122C Velocity components
123 vx = gbuf%MOM(ii + 0 * nel)
124 vy = gbuf%MOM(ii + 1 * nel)
125 vz = gbuf%MOM(ii + 2 * nel)
126! Square norm of the velocity
127 vel2 = vx * vx + vy * vy + vz * vz
128! Conserved variable
129 vii(1) = gbuf%RHO(ii)
130 vii(2) = vii(1) * vx
131 vii(3) = vii(1) * vy
132 vii(4) = vii(1) * vz
133 vii(5) = gbuf%EINT(ii) + half * vii(1) * vel2
134
135! Volume
136 vol = gbuf%VOL(ii)
137! Sum of fluxes
138 IF (multi_fvm%SYM == 0 .AND. isolnod /= 4) THEN
139 sumflux(1:5) = multi_fvm%FLUXES(1:5, 1, i) + multi_fvm%FLUXES(1:5, 2, i) +
140 . multi_fvm%FLUXES(1:5, 3, i) + multi_fvm%FLUXES(1:5, 4, i) +
141 . multi_fvm%FLUXES(1:5, 5, i) + multi_fvm%FLUXES(1:5, 6, i)
142 ELSEIF (isolnod == 4) THEN
143 sumflux(1:5) = multi_fvm%FLUXES(1:5, 5, i) + multi_fvm%FLUXES(1:5, 6, i) +
144 . multi_fvm%FLUXES(1:5, 2, i) + multi_fvm%FLUXES(1:5, 4, i)
145 ELSE
146C TRIANGLES
147 sumflux(1:5) = multi_fvm%FLUXES(1:5, 1, i) + multi_fvm%FLUXES(1:5, 2, i) +
148 . multi_fvm%FLUXES(1:5, 3, i)
149 IF (ity == 2) THEN
150C QUADS
151 sumflux(1:5) = sumflux(1:5) + multi_fvm%FLUXES(1:5, 4, i)
152 ENDIF
153 ENDIF
154! Time evolution
155 vii(1:5) = vol * vii(1:5) - timestep * sumflux(1:5)
156! 2D axi
157 IF (multi_fvm%SYM == 1) THEN
158 pres = multi_fvm%PRES(i)
159 vii(3) = vii(3) + timestep * gbuf%AREA(ii) * pres
160 ENDIF
161! Gravity
162 gravii(1:3) = zero
163 nvertex = 0
164! TODO(DC) :check the case of tetrahedra
165 DO j = 1, nb_node
166 nodeid = ix(node_list(j), ii)
167 IF(gravity(4, nodeid) == zero) cycle
168 nvertex = nvertex + 1
169 gravii(1) = gravii(1) + gravity(1, nodeid)
170 gravii(2) = gravii(2) + gravity(2, nodeid)
171 gravii(3) = gravii(3) + gravity(3, nodeid)
172 ENDDO
173 IF (nvertex > 0) THEN
174 gravii(1:3) = gravii(1:3) / nvertex
175 ENDIF
176 vii(2:4) = vii(2:4) + timestep * gbuf%RHO(ii) * vol * gravii(1:3)
177 wext = timestep * gbuf%RHO(ii) * vol * (
178 . gravii(1) * multi_fvm%VEL(1, i) +
179 . gravii(2) * multi_fvm%VEL(2, i) +
180 . gravii(3) * multi_fvm%VEL(3, i))
181 vii(5) = vii(5) + wext
182 wfextt = wfextt + wext
183! Mass is stored in RHO
184 multi_fvm%RHO(i) = vii(1)
185! Mass times velocity is stored in VEL
186 multi_fvm%VEL(1, i) = vii(2)
187 multi_fvm%VEL(2, i) = vii(3)
188 multi_fvm%VEL(3, i) = vii(4)
189! Total energy is stored in EINT
190 multi_fvm%EINT(i) = vii(5)
191 ENDDO
192
193C-------------------------------------------
194!$OMP ATOMIC
195 wfext=wfext+wfextt
196C-------------------------------------------
197
198C-----------------------------------------------
199C E n d o f s u b r o u t i n e
200C-----------------------------------------------
201 END SUBROUTINE multi_evolve_global
#define my_real
Definition cppsort.cpp:32
subroutine multi_evolve_global(timestep, ng, elbuf_tab, iparg, itask, ixs, ixq, ixtg, multi_fvm, gravity, wfext)