OpenRadioss
2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
sla_gerpvgrw.f
Go to the documentation of this file.
1
*> \brief \b SLA_GERPVGRW
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
*> \htmlonly
9
*> Download SLA_GERPVGRW + dependencies
10
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
11
*> [TGZ]</a>
12
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
13
*> [ZIP]</a>
14
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gerpvgrw.f">
15
*> [TXT]</a>
16
*> \endhtmlonly
17
*
18
* Definition:
19
* ===========
20
*
21
* REAL FUNCTION SLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
22
*
23
* .. Scalar Arguments ..
24
* INTEGER N, NCOLS, LDA, LDAF
25
* ..
26
* .. Array Arguments ..
27
* REAL A( LDA, * ), AF( LDAF, * )
28
* ..
29
*
30
*
31
*> \par Purpose:
32
* =============
33
*>
34
*> \verbatim
35
*>
36
*> SLA_GERPVGRW computes the reciprocal pivot growth factor
37
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
38
*> much less than 1, the stability of the LU factorization of the
39
*> (equilibrated) matrix A could be poor. This also means that the
40
*> solution X, estimated condition numbers, and error bounds could be
41
*> unreliable.
42
*> \endverbatim
43
*
44
* Arguments:
45
* ==========
46
*
47
*> \param[in] N
48
*> \verbatim
49
*> N is INTEGER
50
*> The number of linear equations, i.e., the order of the
51
*> matrix A. N >= 0.
52
*> \endverbatim
53
*>
54
*> \param[in] NCOLS
55
*> \verbatim
56
*> NCOLS is INTEGER
57
*> The number of columns of the matrix A. NCOLS >= 0.
58
*> \endverbatim
59
*>
60
*> \param[in] A
61
*> \verbatim
62
*> A is REAL array, dimension (LDA,N)
63
*> On entry, the N-by-N matrix A.
64
*> \endverbatim
65
*>
66
*> \param[in] LDA
67
*> \verbatim
68
*> LDA is INTEGER
69
*> The leading dimension of the array A. LDA >= max(1,N).
70
*> \endverbatim
71
*>
72
*> \param[in] AF
73
*> \verbatim
74
*> AF is REAL array, dimension (LDAF,N)
75
*> The factors L and U from the factorization
76
*> A = P*L*U as computed by SGETRF.
77
*> \endverbatim
78
*>
79
*> \param[in] LDAF
80
*> \verbatim
81
*> LDAF is INTEGER
82
*> The leading dimension of the array AF. LDAF >= max(1,N).
83
*> \endverbatim
84
*
85
* Authors:
86
* ========
87
*
88
*> \author Univ. of Tennessee
89
*> \author Univ. of California Berkeley
90
*> \author Univ. of Colorado Denver
91
*> \author NAG Ltd.
92
*
93
*> \ingroup realGEcomputational
94
*
95
* =====================================================================
96
REAL
function
sla_gerpvgrw
( n, ncols, a, lda, af, ldaf )
97
*
98
* -- LAPACK computational routine --
99
* -- LAPACK is a software package provided by Univ. of Tennessee, --
100
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
101
*
102
* .. Scalar Arguments ..
103
INTEGER
n, ncols, lda, ldaf
104
* ..
105
* .. Array Arguments ..
106
REAL
a( lda, * ), af( ldaf, * )
107
* ..
108
*
109
* =====================================================================
110
*
111
* .. Local Scalars ..
112
INTEGER
i, j
113
REAL
amax, umax, rpvgrw
114
* ..
115
* .. Intrinsic Functions ..
116
INTRINSIC
abs,
max
,
min
117
* ..
118
* .. Executable Statements ..
119
*
120
rpvgrw = 1.0
121
122
DO
j
= 1, ncols
123
amax = 0.0
124
umax = 0.0
125
DO
i = 1, n
126
amax =
max
( abs( a( i, j ) ), amax )
127
END DO
128
DO
i = 1, j
129
umax =
max
( abs( af( i, j ) ), umax )
130
END DO
131
IF
( umax /= 0.0 )
THEN
132
rpvgrw =
min
( amax / umax, rpvgrw )
133
END IF
134
END DO
135
sla_gerpvgrw
= rpvgrw
136
*
137
* End of SLA_GERPVGRW
138
*
139
END
sla_gerpvgrw
real function sla_gerpvgrw(n, ncols, a, lda, af, ldaf)
SLA_GERPVGRW
Definition
sla_gerpvgrw.f:97
min
#define min(a, b)
Definition
macros.h:20
max
#define max(a, b)
Definition
macros.h:21
engine
extlib
lapack-3.10.1
SRC
sla_gerpvgrw.f
Generated by
1.15.0