OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zgtt05.f
Go to the documentation of this file.
1*> \brief \b ZGTT05
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
12* XACT, LDXACT, FERR, BERR, RESLTS )
13*
14* .. Scalar Arguments ..
15* CHARACTER TRANS
16* INTEGER LDB, LDX, LDXACT, N, NRHS
17* ..
18* .. Array Arguments ..
19* DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
20* COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
21* $ X( LDX, * ), XACT( LDXACT, * )
22* ..
23*
24*
25*> \par Purpose:
26* =============
27*>
28*> \verbatim
29*>
30*> ZGTT05 tests the error bounds from iterative refinement for the
31*> computed solution to a system of equations A*X = B, where A is a
32*> general tridiagonal matrix of order n and op(A) = A or A**T,
33*> depending on TRANS.
34*>
35*> RESLTS(1) = test of the error bound
36*> = norm(X - XACT) / ( norm(X) * FERR )
37*>
38*> A large value is returned if this ratio is not less than one.
39*>
40*> RESLTS(2) = residual from the iterative refinement routine
41*> = the maximum of BERR / ( NZ*EPS + (*) ), where
42*> (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
43*> and NZ = max. number of nonzeros in any row of A, plus 1
44*> \endverbatim
45*
46* Arguments:
47* ==========
48*
49*> \param[in] TRANS
50*> \verbatim
51*> TRANS is CHARACTER*1
52*> Specifies the form of the system of equations.
53*> = 'N': A * X = B (No transpose)
54*> = 'T': A**T * X = B (Transpose)
55*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
56*> \endverbatim
57*>
58*> \param[in] N
59*> \verbatim
60*> N is INTEGER
61*> The number of rows of the matrices X and XACT. N >= 0.
62*> \endverbatim
63*>
64*> \param[in] NRHS
65*> \verbatim
66*> NRHS is INTEGER
67*> The number of columns of the matrices X and XACT. NRHS >= 0.
68*> \endverbatim
69*>
70*> \param[in] DL
71*> \verbatim
72*> DL is COMPLEX*16 array, dimension (N-1)
73*> The (n-1) sub-diagonal elements of A.
74*> \endverbatim
75*>
76*> \param[in] D
77*> \verbatim
78*> D is COMPLEX*16 array, dimension (N)
79*> The diagonal elements of A.
80*> \endverbatim
81*>
82*> \param[in] DU
83*> \verbatim
84*> DU is COMPLEX*16 array, dimension (N-1)
85*> The (n-1) super-diagonal elements of A.
86*> \endverbatim
87*>
88*> \param[in] B
89*> \verbatim
90*> B is COMPLEX*16 array, dimension (LDB,NRHS)
91*> The right hand side vectors for the system of linear
92*> equations.
93*> \endverbatim
94*>
95*> \param[in] LDB
96*> \verbatim
97*> LDB is INTEGER
98*> The leading dimension of the array B. LDB >= max(1,N).
99*> \endverbatim
100*>
101*> \param[in] X
102*> \verbatim
103*> X is COMPLEX*16 array, dimension (LDX,NRHS)
104*> The computed solution vectors. Each vector is stored as a
105*> column of the matrix X.
106*> \endverbatim
107*>
108*> \param[in] LDX
109*> \verbatim
110*> LDX is INTEGER
111*> The leading dimension of the array X. LDX >= max(1,N).
112*> \endverbatim
113*>
114*> \param[in] XACT
115*> \verbatim
116*> XACT is COMPLEX*16 array, dimension (LDX,NRHS)
117*> The exact solution vectors. Each vector is stored as a
118*> column of the matrix XACT.
119*> \endverbatim
120*>
121*> \param[in] LDXACT
122*> \verbatim
123*> LDXACT is INTEGER
124*> The leading dimension of the array XACT. LDXACT >= max(1,N).
125*> \endverbatim
126*>
127*> \param[in] FERR
128*> \verbatim
129*> FERR is DOUBLE PRECISION array, dimension (NRHS)
130*> The estimated forward error bounds for each solution vector
131*> X. If XTRUE is the true solution, FERR bounds the magnitude
132*> of the largest entry in (X - XTRUE) divided by the magnitude
133*> of the largest entry in X.
134*> \endverbatim
135*>
136*> \param[in] BERR
137*> \verbatim
138*> BERR is DOUBLE PRECISION array, dimension (NRHS)
139*> The componentwise relative backward error of each solution
140*> vector (i.e., the smallest relative change in any entry of A
141*> or B that makes X an exact solution).
142*> \endverbatim
143*>
144*> \param[out] RESLTS
145*> \verbatim
146*> RESLTS is DOUBLE PRECISION array, dimension (2)
147*> The maximum over the NRHS solution vectors of the ratios:
148*> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
149*> RESLTS(2) = BERR / ( NZ*EPS + (*) )
150*> \endverbatim
151*
152* Authors:
153* ========
154*
155*> \author Univ. of Tennessee
156*> \author Univ. of California Berkeley
157*> \author Univ. of Colorado Denver
158*> \author NAG Ltd.
159*
160*> \ingroup complex16_lin
161*
162* =====================================================================
163 SUBROUTINE zgtt05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
164 $ XACT, LDXACT, FERR, BERR, RESLTS )
165*
166* -- LAPACK test routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER TRANS
172 INTEGER LDB, LDX, LDXACT, N, NRHS
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
176 COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
177 $ x( ldx, * ), xact( ldxact, * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 DOUBLE PRECISION ZERO, ONE
184 parameter( zero = 0.0d+0, one = 1.0d+0 )
185* ..
186* .. Local Scalars ..
187 LOGICAL NOTRAN
188 INTEGER I, IMAX, J, K, NZ
189 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
190 COMPLEX*16 ZDUM
191* ..
192* .. External Functions ..
193 LOGICAL LSAME
194 INTEGER IZAMAX
195 DOUBLE PRECISION DLAMCH
196 EXTERNAL lsame, izamax, dlamch
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC abs, dble, dimag, max, min
200* ..
201* .. Statement Functions ..
202 DOUBLE PRECISION CABS1
203* ..
204* .. Statement Function definitions ..
205 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
206* ..
207* .. Executable Statements ..
208*
209* Quick exit if N = 0 or NRHS = 0.
210*
211 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
212 reslts( 1 ) = zero
213 reslts( 2 ) = zero
214 RETURN
215 END IF
216*
217 eps = dlamch( 'epsilon' )
218 UNFL = DLAMCH( 'safe minimum' )
219 OVFL = ONE / UNFL
220 NOTRAN = LSAME( TRANS, 'n' )
221 NZ = 4
222*
223* Test 1: Compute the maximum of
224* norm(X - XACT) / ( norm(X) * FERR )
225* over all the vectors X and XACT using the infinity-norm.
226*
227 ERRBND = ZERO
228 DO 30 J = 1, NRHS
229 IMAX = IZAMAX( N, X( 1, J ), 1 )
230 XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
231 DIFF = ZERO
232 DO 10 I = 1, N
233 DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
234 10 CONTINUE
235*
236.GT. IF( XNORMONE ) THEN
237 GO TO 20
238.LE. ELSE IF( DIFFOVFL*XNORM ) THEN
239 GO TO 20
240 ELSE
241 ERRBND = ONE / EPS
242 GO TO 30
243 END IF
244*
245 20 CONTINUE
246.LE. IF( DIFF / XNORMFERR( J ) ) THEN
247 ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
248 ELSE
249 ERRBND = ONE / EPS
250 END IF
251 30 CONTINUE
252 RESLTS( 1 ) = ERRBND
253*
254* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
255* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
256*
257 DO 60 K = 1, NRHS
258 IF( NOTRAN ) THEN
259.EQ. IF( N1 ) THEN
260 AXBI = CABS1( B( 1, K ) ) +
261 $ CABS1( D( 1 ) )*CABS1( X( 1, K ) )
262 ELSE
263 AXBI = CABS1( B( 1, K ) ) +
264 $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) +
265 $ CABS1( DU( 1 ) )*CABS1( X( 2, K ) )
266 DO 40 I = 2, N - 1
267 TMP = CABS1( B( I, K ) ) +
268 $ CABS1( DL( I-1 ) )*CABS1( X( I-1, K ) ) +
269 $ CABS1( D( I ) )*CABS1( X( I, K ) ) +
270 $ CABS1( DU( I ) )*CABS1( X( I+1, K ) )
271 AXBI = MIN( AXBI, TMP )
272 40 CONTINUE
273 TMP = CABS1( B( N, K ) ) + CABS1( DL( N-1 ) )*
274 $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )*
275 $ CABS1( X( N, K ) )
276 AXBI = MIN( AXBI, TMP )
277 END IF
278 ELSE
279.EQ. IF( N1 ) THEN
280 AXBI = CABS1( B( 1, K ) ) +
281 $ CABS1( D( 1 ) )*CABS1( X( 1, K ) )
282 ELSE
283 AXBI = CABS1( B( 1, K ) ) +
284 $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) +
285 $ CABS1( DL( 1 ) )*CABS1( X( 2, K ) )
286 DO 50 I = 2, N - 1
287 TMP = CABS1( B( I, K ) ) +
288 $ CABS1( DU( I-1 ) )*CABS1( X( I-1, K ) ) +
289 $ CABS1( D( I ) )*CABS1( X( I, K ) ) +
290 $ CABS1( DL( I ) )*CABS1( X( I+1, K ) )
291 AXBI = MIN( AXBI, TMP )
292 50 CONTINUE
293 TMP = CABS1( B( N, K ) ) + CABS1( DU( N-1 ) )*
294 $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )*
295 $ CABS1( X( N, K ) )
296 AXBI = MIN( AXBI, TMP )
297 END IF
298 END IF
299 TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
300.EQ. IF( K1 ) THEN
301 RESLTS( 2 ) = TMP
302 ELSE
303 RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
304 END IF
305 60 CONTINUE
306*
307 RETURN
308*
309* End of ZGTT05
310*
311 END
integer function izamax(n, zx, incx)
IZAMAX
Definition izamax.f:71
subroutine zgtt05(trans, n, nrhs, dl, d, du, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
ZGTT05
Definition zgtt05.f:165
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21