174 SUBROUTINE chetd2( UPLO, N, A, LDA, D, E, TAU, INFO )
186 COMPLEX A( LDA, * ), TAU( * )
192 COMPLEX ONE, ZERO, HALF
193 parameter( one = ( 1.0e+0, 0.0e+0 ),
194 $ zero = ( 0.0e+0, 0.0e+0 ),
195 $ half = ( 0.5e+0, 0.0e+0 ) )
219 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
221 ELSE IF( n.LT.0 )
THEN
223 ELSE IF( lda.LT.
max( 1, n ) )
THEN
227 CALL xerbla(
'CHETD2', -info )
240 a( n, n ) = real( a( n, n ) )
241 DO 10 i = n - 1, 1, -1
247 CALL clarfg( i, alpha, a( 1, i+1 ), 1, taui )
248 e( i ) = real( alpha )
250 IF( taui.NE.zero )
THEN
258 CALL chemv( uplo, i, taui, a, lda, a( 1, i+1 ), 1, zero,
263 alpha = -half*taui*cdotc( i, tau, 1, a( 1, i+1 ), 1 )
264 CALL caxpy( i, alpha, a( 1, i+1 ), 1, tau, 1 )
269 CALL cher2( uplo, i, -one, a( 1, i+1 ), 1, tau, 1, a,
273 a( i, i ) = real( a( i, i ) )
276 d( i+1 ) = real( a( i+1, i+1 ) )
279 d( 1 ) = real( a( 1, 1 ) )
284 a( 1, 1 ) = real( a( 1, 1 ) )
291 CALL clarfg( n-i, alpha, a(
min( i+2, n ), i ), 1, taui )
292 e( i ) = real( alpha )
294 IF( taui.NE.zero )
THEN
302 CALL chemv( uplo, n-i, taui, a( i+1, i+1 ), lda,
303 $ a( i+1, i ), 1, zero, tau( i ), 1 )
307 alpha = -half*taui*cdotc( n-i, tau( i ), 1, a( i+1, i ),
309 CALL caxpy( n-i, alpha, a( i+1, i ), 1, tau( i ), 1 )
314 CALL cher2( uplo, n-i, -one, a( i+1, i ), 1, tau( i ), 1,
315 $ a( i+1, i+1 ), lda )
318 a( i+1, i+1 ) = real( a( i+1, i+1 ) )
321 d( i ) = real( a( i, i ) )
324 d( n ) = real( a( n, n ) )
subroutine chetd2(uplo, n, a, lda, d, e, tau, info)
CHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transfo...