OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cla_gbamv.f
Go to the documentation of this file.
1*> \brief \b CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_GBAMV + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbamv.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbamv.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbamv.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
22* INCX, BETA, Y, INCY )
23*
24* .. Scalar Arguments ..
25* REAL ALPHA, BETA
26* INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
27* ..
28* .. Array Arguments ..
29* COMPLEX AB( LDAB, * ), X( * )
30* REAL Y( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> CLA_GBAMV performs one of the matrix-vector operations
40*>
41*> y := alpha*abs(A)*abs(x) + beta*abs(y),
42*> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
43*>
44*> where alpha and beta are scalars, x and y are vectors and A is an
45*> m by n matrix.
46*>
47*> This function is primarily used in calculating error bounds.
48*> To protect against underflow during evaluation, components in
49*> the resulting vector are perturbed away from zero by (N+1)
50*> times the underflow threshold. To prevent unnecessarily large
51*> errors for block-structure embedded in general matrices,
52*> "symbolically" zero components are not perturbed. A zero
53*> entry is considered "symbolic" if all multiplications involved
54*> in computing that entry have at least one zero multiplicand.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] TRANS
61*> \verbatim
62*> TRANS is INTEGER
63*> On entry, TRANS specifies the operation to be performed as
64*> follows:
65*>
66*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
67*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
68*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
69*>
70*> Unchanged on exit.
71*> \endverbatim
72*>
73*> \param[in] M
74*> \verbatim
75*> M is INTEGER
76*> On entry, M specifies the number of rows of the matrix A.
77*> M must be at least zero.
78*> Unchanged on exit.
79*> \endverbatim
80*>
81*> \param[in] N
82*> \verbatim
83*> N is INTEGER
84*> On entry, N specifies the number of columns of the matrix A.
85*> N must be at least zero.
86*> Unchanged on exit.
87*> \endverbatim
88*>
89*> \param[in] KL
90*> \verbatim
91*> KL is INTEGER
92*> The number of subdiagonals within the band of A. KL >= 0.
93*> \endverbatim
94*>
95*> \param[in] KU
96*> \verbatim
97*> KU is INTEGER
98*> The number of superdiagonals within the band of A. KU >= 0.
99*> \endverbatim
100*>
101*> \param[in] ALPHA
102*> \verbatim
103*> ALPHA is REAL
104*> On entry, ALPHA specifies the scalar alpha.
105*> Unchanged on exit.
106*> \endverbatim
107*>
108*> \param[in] AB
109*> \verbatim
110*> AB is COMPLEX array, dimension (LDAB,n)
111*> Before entry, the leading m by n part of the array AB must
112*> contain the matrix of coefficients.
113*> Unchanged on exit.
114*> \endverbatim
115*>
116*> \param[in] LDAB
117*> \verbatim
118*> LDAB is INTEGER
119*> On entry, LDAB specifies the first dimension of AB as declared
120*> in the calling (sub) program. LDAB must be at least
121*> max( 1, m ).
122*> Unchanged on exit.
123*> \endverbatim
124*>
125*> \param[in] X
126*> \verbatim
127*> X is COMPLEX array, dimension
128*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
129*> and at least
130*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
131*> Before entry, the incremented array X must contain the
132*> vector x.
133*> Unchanged on exit.
134*> \endverbatim
135*>
136*> \param[in] INCX
137*> \verbatim
138*> INCX is INTEGER
139*> On entry, INCX specifies the increment for the elements of
140*> X. INCX must not be zero.
141*> Unchanged on exit.
142*> \endverbatim
143*>
144*> \param[in] BETA
145*> \verbatim
146*> BETA is REAL
147*> On entry, BETA specifies the scalar beta. When BETA is
148*> supplied as zero then Y need not be set on input.
149*> Unchanged on exit.
150*> \endverbatim
151*>
152*> \param[in,out] Y
153*> \verbatim
154*> Y is REAL array, dimension
155*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
156*> and at least
157*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
158*> Before entry with BETA non-zero, the incremented array Y
159*> must contain the vector y. On exit, Y is overwritten by the
160*> updated vector y.
161*> \endverbatim
162*>
163*> \param[in] INCY
164*> \verbatim
165*> INCY is INTEGER
166*> On entry, INCY specifies the increment for the elements of
167*> Y. INCY must not be zero.
168*> Unchanged on exit.
169*>
170*> Level 2 Blas routine.
171*> \endverbatim
172*
173* Authors:
174* ========
175*
176*> \author Univ. of Tennessee
177*> \author Univ. of California Berkeley
178*> \author Univ. of Colorado Denver
179*> \author NAG Ltd.
180*
181*> \ingroup complexGBcomputational
182*
183* =====================================================================
184 SUBROUTINE cla_gbamv( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
185 $ INCX, BETA, Y, INCY )
186*
187* -- LAPACK computational routine --
188* -- LAPACK is a software package provided by Univ. of Tennessee, --
189* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
190*
191* .. Scalar Arguments ..
192 REAL ALPHA, BETA
193 INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
194* ..
195* .. Array Arguments ..
196 COMPLEX AB( LDAB, * ), X( * )
197 REAL Y( * )
198* ..
199*
200* =====================================================================
201*
202* .. Parameters ..
203 COMPLEX ONE, ZERO
204 parameter( one = 1.0e+0, zero = 0.0e+0 )
205* ..
206* .. Local Scalars ..
207 LOGICAL SYMB_ZERO
208 REAL TEMP, SAFE1
209 INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
210 COMPLEX CDUM
211* ..
212* .. External Subroutines ..
213 EXTERNAL xerbla, slamch
214 REAL SLAMCH
215* ..
216* .. External Functions ..
217 EXTERNAL ilatrans
218 INTEGER ILATRANS
219* ..
220* .. Intrinsic Functions ..
221 INTRINSIC max, abs, real, aimag, sign
222* ..
223* .. Statement Functions
224 REAL CABS1
225* ..
226* .. Statement Function Definitions ..
227 cabs1( cdum ) = abs( real( cdum ) ) + abs( aimag( cdum ) )
228* ..
229* .. Executable Statements ..
230*
231* Test the input parameters.
232*
233 info = 0
234 IF ( .NOT.( ( trans.EQ.ilatrans( 'N' ) )
235 $ .OR. ( trans.EQ.ilatrans( 't' ) )
236.OR..EQ. $ ( TRANSILATRANS( 'c' ) ) ) ) THEN
237 INFO = 1
238.LT. ELSE IF( M0 )THEN
239 INFO = 2
240.LT. ELSE IF( N0 )THEN
241 INFO = 3
242.LT..OR..GT. ELSE IF( KL0 KLM-1 ) THEN
243 INFO = 4
244.LT..OR..GT. ELSE IF( KU0 KUN-1 ) THEN
245 INFO = 5
246.LT. ELSE IF( LDABKL+KU+1 )THEN
247 INFO = 6
248.EQ. ELSE IF( INCX0 )THEN
249 INFO = 8
250.EQ. ELSE IF( INCY0 )THEN
251 INFO = 11
252 END IF
253.NE. IF( INFO0 )THEN
254 CALL XERBLA( 'cla_gbamv ', INFO )
255 RETURN
256 END IF
257*
258* Quick return if possible.
259*
260.EQ..OR..EQ..OR. IF( ( M0 )( N0 )
261.EQ..AND..EQ. $ ( ( ALPHAZERO )( BETAONE ) ) )
262 $ RETURN
263*
264* Set LENX and LENY, the lengths of the vectors x and y, and set
265* up the start points in X and Y.
266*
267.EQ. IF( TRANSILATRANS( 'n' ) )THEN
268 LENX = N
269 LENY = M
270 ELSE
271 LENX = M
272 LENY = N
273 END IF
274.GT. IF( INCX0 )THEN
275 KX = 1
276 ELSE
277 KX = 1 - ( LENX - 1 )*INCX
278 END IF
279.GT. IF( INCY0 )THEN
280 KY = 1
281 ELSE
282 KY = 1 - ( LENY - 1 )*INCY
283 END IF
284*
285* Set SAFE1 essentially to be the underflow threshold times the
286* number of additions in each row.
287*
288 SAFE1 = SLAMCH( 'safe minimum' )
289 SAFE1 = (N+1)*SAFE1
290*
291* Form y := alpha*abs(A)*abs(x) + beta*abs(y).
292*
293* The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
294* the inexact flag. Still doesn't help change the iteration order
295* to per-column.
296*
297 KD = KU + 1
298 KE = KL + 1
299 IY = KY
300.EQ. IF ( INCX1 ) THEN
301.EQ. IF( TRANSILATRANS( 'n' ) )THEN
302 DO I = 1, LENY
303.EQ. IF ( BETA 0.0 ) THEN
304 SYMB_ZERO = .TRUE.
305 Y( IY ) = 0.0
306.EQ. ELSE IF ( Y( IY ) 0.0 ) THEN
307 SYMB_ZERO = .TRUE.
308 ELSE
309 SYMB_ZERO = .FALSE.
310 Y( IY ) = BETA * ABS( Y( IY ) )
311 END IF
312.NE. IF ( ALPHA 0.0 ) THEN
313 DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
314 TEMP = CABS1( AB( KD+I-J, J ) )
315.AND. SYMB_ZERO = SYMB_ZERO
316.EQ..OR..EQ. $ ( X( J ) ZERO TEMP ZERO )
317
318 Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
319 END DO
320 END IF
321
322.NOT. IF ( SYMB_ZERO)
323 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
324
325 IY = IY + INCY
326 END DO
327 ELSE
328 DO I = 1, LENY
329.EQ. IF ( BETA 0.0 ) THEN
330 SYMB_ZERO = .TRUE.
331 Y( IY ) = 0.0
332.EQ. ELSE IF ( Y( IY ) 0.0 ) THEN
333 SYMB_ZERO = .TRUE.
334 ELSE
335 SYMB_ZERO = .FALSE.
336 Y( IY ) = BETA * ABS( Y( IY ) )
337 END IF
338.NE. IF ( ALPHA 0.0 ) THEN
339 DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
340 TEMP = CABS1( AB( KE-I+J, I ) )
341.AND. SYMB_ZERO = SYMB_ZERO
342.EQ..OR..EQ. $ ( X( J ) ZERO TEMP ZERO )
343
344 Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
345 END DO
346 END IF
347
348.NOT. IF ( SYMB_ZERO)
349 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
350
351 IY = IY + INCY
352 END DO
353 END IF
354 ELSE
355.EQ. IF( TRANSILATRANS( 'n' ) )THEN
356 DO I = 1, LENY
357.EQ. IF ( BETA 0.0 ) THEN
358 SYMB_ZERO = .TRUE.
359 Y( IY ) = 0.0
360.EQ. ELSE IF ( Y( IY ) 0.0 ) THEN
361 SYMB_ZERO = .TRUE.
362 ELSE
363 SYMB_ZERO = .FALSE.
364 Y( IY ) = BETA * ABS( Y( IY ) )
365 END IF
366.NE. IF ( ALPHA 0.0 ) THEN
367 JX = KX
368 DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
369 TEMP = CABS1( AB( KD+I-J, J ) )
370.AND. SYMB_ZERO = SYMB_ZERO
371.EQ..OR..EQ. $ ( X( JX ) ZERO TEMP ZERO )
372
373 Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
374 JX = JX + INCX
375 END DO
376 END IF
377
378.NOT. IF ( SYMB_ZERO )
379 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
380
381 IY = IY + INCY
382 END DO
383 ELSE
384 DO I = 1, LENY
385.EQ. IF ( BETA 0.0 ) THEN
386 SYMB_ZERO = .TRUE.
387 Y( IY ) = 0.0
388.EQ. ELSE IF ( Y( IY ) 0.0 ) THEN
389 SYMB_ZERO = .TRUE.
390 ELSE
391 SYMB_ZERO = .FALSE.
392 Y( IY ) = BETA * ABS( Y( IY ) )
393 END IF
394.NE. IF ( ALPHA 0.0 ) THEN
395 JX = KX
396 DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
397 TEMP = CABS1( AB( KE-I+J, I ) )
398.AND. SYMB_ZERO = SYMB_ZERO
399.EQ..OR..EQ. $ ( X( JX ) ZERO TEMP ZERO )
400
401 Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
402 JX = JX + INCX
403 END DO
404 END IF
405
406.NOT. IF ( SYMB_ZERO )
407 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
408
409 IY = IY + INCY
410 END DO
411 END IF
412
413 END IF
414*
415 RETURN
416*
417* End of CLA_GBAMV
418*
419 END
integer function ilatrans(trans)
ILATRANS
Definition ilatrans.f:58
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine cla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Definition cla_gbamv.f:186
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
#define max(a, b)
Definition macros.h:21