141 COMPLEX ab( ldab, * )
148 parameter( one = 1.0e+0, zero = 0.0e+0 )
152 REAL absa, scale, sum, value
162 INTRINSIC abs,
max,
min, sqrt
173 IF(
lsame( uplo,
'U' ) )
THEN
175 DO 10 i =
max( k+2-j, 1 ), k + 1
176 sum = abs( ab( i, j ) )
177 IF(
VALUE .LT. sum .OR.
sisnan( sum ) )
VALUE = sum
182 DO 30 i = 1,
min( n+1-j, k+1 )
183 sum = abs( ab( i, j ) )
184 IF(
VALUE .LT. sum .OR.
sisnan( sum
VALUE
189 $ (
norm.EQ.
'1' ) )
THEN
194 IF(
lsame( uplo,
'U' ) )
THEN
198 DO 50 i =
max( 1, j-k ), j - 1
199 absa = abs( ab( l+i, j ) )
201 work( i ) = work( i ) + absa
203 work( j ) = sum + abs( ab( k+1, j ) )
207 IF(
VALUE .LT. sum .OR.
sisnan( sum ) )
VALUE = sum
214 sum = work( j ) + abs( ab( 1, j ) )
216 DO 90 i = j + 1,
min( n, j+k )
217 absa = abs( ab( l+i, j ) )
219 work( i ) = work( i ) + absa
221 IF(
VALUE .LT. sum .OR.
sisnan( sum ) )
VALUE = sum
231 IF( LSAME( UPLO, 'u
' ) ) THEN
233 CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
239 CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
248 CALL CLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM )
249 VALUE = SCALE*SQRT( SUM )
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
logical function sisnan(sin)
SISNAN tests input for NaN.
subroutine classq(n, x, incx, scl, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
logical function lsame(ca, cb)
LSAME
real function clansb(norm, uplo, n, k, ab, ldab, work)
CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...