OpenRadioss
2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cpoequ.f
Go to the documentation of this file.
1
*> \brief \b CPOEQU
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
*> \htmlonly
9
*> Download CPOEQU + dependencies
10
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequ.f">
11
*> [TGZ]</a>
12
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequ.f">
13
*> [ZIP]</a>
14
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequ.f">
15
*> [TXT]</a>
16
*> \endhtmlonly
17
*
18
* Definition:
19
* ===========
20
*
21
* SUBROUTINE CPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
22
*
23
* .. Scalar Arguments ..
24
* INTEGER INFO, LDA, N
25
* REAL AMAX, SCOND
26
* ..
27
* .. Array Arguments ..
28
* REAL S( * )
29
* COMPLEX A( LDA, * )
30
* ..
31
*
32
*
33
*> \par Purpose:
34
* =============
35
*>
36
*> \verbatim
37
*>
38
*> CPOEQU computes row and column scalings intended to equilibrate a
39
*> Hermitian positive definite matrix A and reduce its condition number
40
*> (with respect to the two-norm). S contains the scale factors,
41
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
42
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
43
*> choice of S puts the condition number of B within a factor N of the
44
*> smallest possible condition number over all possible diagonal
45
*> scalings.
46
*> \endverbatim
47
*
48
* Arguments:
49
* ==========
50
*
51
*> \param[in] N
52
*> \verbatim
53
*> N is INTEGER
54
*> The order of the matrix A. N >= 0.
55
*> \endverbatim
56
*>
57
*> \param[in] A
58
*> \verbatim
59
*> A is COMPLEX array, dimension (LDA,N)
60
*> The N-by-N Hermitian positive definite matrix whose scaling
61
*> factors are to be computed. Only the diagonal elements of A
62
*> are referenced.
63
*> \endverbatim
64
*>
65
*> \param[in] LDA
66
*> \verbatim
67
*> LDA is INTEGER
68
*> The leading dimension of the array A. LDA >= max(1,N).
69
*> \endverbatim
70
*>
71
*> \param[out] S
72
*> \verbatim
73
*> S is REAL array, dimension (N)
74
*> If INFO = 0, S contains the scale factors for A.
75
*> \endverbatim
76
*>
77
*> \param[out] SCOND
78
*> \verbatim
79
*> SCOND is REAL
80
*> If INFO = 0, S contains the ratio of the smallest S(i) to
81
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
82
*> large nor too small, it is not worth scaling by S.
83
*> \endverbatim
84
*>
85
*> \param[out] AMAX
86
*> \verbatim
87
*> AMAX is REAL
88
*> Absolute value of largest matrix element. If AMAX is very
89
*> close to overflow or very close to underflow, the matrix
90
*> should be scaled.
91
*> \endverbatim
92
*>
93
*> \param[out] INFO
94
*> \verbatim
95
*> INFO is INTEGER
96
*> = 0: successful exit
97
*> < 0: if INFO = -i, the i-th argument had an illegal value
98
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
99
*> \endverbatim
100
*
101
* Authors:
102
* ========
103
*
104
*> \author Univ. of Tennessee
105
*> \author Univ. of California Berkeley
106
*> \author Univ. of Colorado Denver
107
*> \author NAG Ltd.
108
*
109
*> \ingroup complexPOcomputational
110
*
111
* =====================================================================
112
SUBROUTINE
cpoequ
( N, A, LDA, S, SCOND, AMAX, INFO )
113
*
114
* -- LAPACK computational routine --
115
* -- LAPACK is a software package provided by Univ. of Tennessee, --
116
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117
*
118
* .. Scalar Arguments ..
119
INTEGER
INFO, LDA, N
120
REAL
AMAX, SCOND
121
* ..
122
* .. Array Arguments ..
123
REAL
S( * )
124
COMPLEX
A( LDA, * )
125
* ..
126
*
127
* =====================================================================
128
*
129
* .. Parameters ..
130
REAL
ZERO, ONE
131
parameter( zero = 0.0e+0, one = 1.0e+0 )
132
* ..
133
* .. Local Scalars ..
134
INTEGER
I
135
REAL
SMIN
136
* ..
137
* .. External Subroutines ..
138
EXTERNAL
xerbla
139
* ..
140
* .. Intrinsic Functions ..
141
INTRINSIC
max
,
min
, real, sqrt
142
* ..
143
* .. Executable Statements ..
144
*
145
* Test the input parameters.
146
*
147
info = 0
148
IF
( n.LT.0 )
THEN
149
info = -1
150
ELSE
IF
( lda.LT.
max
( 1, n ) )
THEN
151
info = -3
152
END IF
153
IF
( info.NE.0 )
THEN
154
CALL
xerbla
( '
cpoequ
', -INFO )
155
RETURN
156
END IF
157
*
158
* Quick return if possible
159
*
160
.EQ.
IF( N0 ) THEN
161
SCOND = ONE
162
AMAX = ZERO
163
RETURN
164
END IF
165
*
166
* Find the minimum and maximum diagonal elements.
167
*
168
S( 1 ) = REAL( A( 1, 1 ) )
169
SMIN = S( 1 )
170
AMAX = S( 1 )
171
DO 10 I = 2, N
172
S( I ) = REAL( A( I, I ) )
173
SMIN = MIN( SMIN, S( I ) )
174
AMAX = MAX( AMAX, S( I ) )
175
10 CONTINUE
176
*
177
.LE.
IF( SMINZERO ) THEN
178
*
179
* Find the first non-positive diagonal element and return.
180
*
181
DO 20 I = 1, N
182
.LE.
IF( S( I )ZERO ) THEN
183
INFO = I
184
RETURN
185
END IF
186
20 CONTINUE
187
ELSE
188
*
189
* Set the scale factors to the reciprocals
190
* of the diagonal elements.
191
*
192
DO 30 I = 1, N
193
S( I ) = ONE / SQRT( S( I ) )
194
30 CONTINUE
195
*
196
* Compute SCOND = min(S(I)) / max(S(I))
197
*
198
SCOND = SQRT( SMIN ) / SQRT( AMAX )
199
END IF
200
RETURN
201
*
202
* End of CPOEQU
203
*
204
END
xerbla
subroutine xerbla(srname, info)
XERBLA
Definition
xerbla.f:60
cpoequ
subroutine cpoequ(n, a, lda, s, scond, amax, info)
CPOEQU
Definition
cpoequ.f:113
min
#define min(a, b)
Definition
macros.h:20
max
#define max(a, b)
Definition
macros.h:21
engine
extlib
lapack-3.10.1
SRC
cpoequ.f
Generated by
1.15.0