OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
ctgsen.f
Go to the documentation of this file.
1*> \brief \b CTGSEN
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CTGSEN + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsen.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsen.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsen.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
22* ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
23* WORK, LWORK, IWORK, LIWORK, INFO )
24*
25* .. Scalar Arguments ..
26* LOGICAL WANTQ, WANTZ
27* INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
28* $ M, N
29* REAL PL, PR
30* ..
31* .. Array Arguments ..
32* LOGICAL SELECT( * )
33* INTEGER IWORK( * )
34* REAL DIF( * )
35* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
36* $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
37* ..
38*
39*
40*> \par Purpose:
41* =============
42*>
43*> \verbatim
44*>
45*> CTGSEN reorders the generalized Schur decomposition of a complex
46*> matrix pair (A, B) (in terms of an unitary equivalence trans-
47*> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
48*> appears in the leading diagonal blocks of the pair (A,B). The leading
49*> columns of Q and Z form unitary bases of the corresponding left and
50*> right eigenspaces (deflating subspaces). (A, B) must be in
51*> generalized Schur canonical form, that is, A and B are both upper
52*> triangular.
53*>
54*> CTGSEN also computes the generalized eigenvalues
55*>
56*> w(j)= ALPHA(j) / BETA(j)
57*>
58*> of the reordered matrix pair (A, B).
59*>
60*> Optionally, the routine computes estimates of reciprocal condition
61*> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
62*> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
63*> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
64*> the selected cluster and the eigenvalues outside the cluster, resp.,
65*> and norms of "projections" onto left and right eigenspaces w.r.t.
66*> the selected cluster in the (1,1)-block.
67*>
68*> \endverbatim
69*
70* Arguments:
71* ==========
72*
73*> \param[in] IJOB
74*> \verbatim
75*> IJOB is INTEGER
76*> Specifies whether condition numbers are required for the
77*> cluster of eigenvalues (PL and PR) or the deflating subspaces
78*> (Difu and Difl):
79*> =0: Only reorder w.r.t. SELECT. No extras.
80*> =1: Reciprocal of norms of "projections" onto left and right
81*> eigenspaces w.r.t. the selected cluster (PL and PR).
82*> =2: Upper bounds on Difu and Difl. F-norm-based estimate
83*> (DIF(1:2)).
84*> =3: Estimate of Difu and Difl. 1-norm-based estimate
85*> (DIF(1:2)).
86*> About 5 times as expensive as IJOB = 2.
87*> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
88*> version to get it all.
89*> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
90*> \endverbatim
91*>
92*> \param[in] WANTQ
93*> \verbatim
94*> WANTQ is LOGICAL
95*> .TRUE. : update the left transformation matrix Q;
96*> .FALSE.: do not update Q.
97*> \endverbatim
98*>
99*> \param[in] WANTZ
100*> \verbatim
101*> WANTZ is LOGICAL
102*> .TRUE. : update the right transformation matrix Z;
103*> .FALSE.: do not update Z.
104*> \endverbatim
105*>
106*> \param[in] SELECT
107*> \verbatim
108*> SELECT is LOGICAL array, dimension (N)
109*> SELECT specifies the eigenvalues in the selected cluster. To
110*> select an eigenvalue w(j), SELECT(j) must be set to
111*> .TRUE..
112*> \endverbatim
113*>
114*> \param[in] N
115*> \verbatim
116*> N is INTEGER
117*> The order of the matrices A and B. N >= 0.
118*> \endverbatim
119*>
120*> \param[in,out] A
121*> \verbatim
122*> A is COMPLEX array, dimension(LDA,N)
123*> On entry, the upper triangular matrix A, in generalized
124*> Schur canonical form.
125*> On exit, A is overwritten by the reordered matrix A.
126*> \endverbatim
127*>
128*> \param[in] LDA
129*> \verbatim
130*> LDA is INTEGER
131*> The leading dimension of the array A. LDA >= max(1,N).
132*> \endverbatim
133*>
134*> \param[in,out] B
135*> \verbatim
136*> B is COMPLEX array, dimension(LDB,N)
137*> On entry, the upper triangular matrix B, in generalized
138*> Schur canonical form.
139*> On exit, B is overwritten by the reordered matrix B.
140*> \endverbatim
141*>
142*> \param[in] LDB
143*> \verbatim
144*> LDB is INTEGER
145*> The leading dimension of the array B. LDB >= max(1,N).
146*> \endverbatim
147*>
148*> \param[out] ALPHA
149*> \verbatim
150*> ALPHA is COMPLEX array, dimension (N)
151*> \endverbatim
152*>
153*> \param[out] BETA
154*> \verbatim
155*> BETA is COMPLEX array, dimension (N)
156*>
157*> The diagonal elements of A and B, respectively,
158*> when the pair (A,B) has been reduced to generalized Schur
159*> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
160*> eigenvalues.
161*> \endverbatim
162*>
163*> \param[in,out] Q
164*> \verbatim
165*> Q is COMPLEX array, dimension (LDQ,N)
166*> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
167*> On exit, Q has been postmultiplied by the left unitary
168*> transformation matrix which reorder (A, B); The leading M
169*> columns of Q form orthonormal bases for the specified pair of
170*> left eigenspaces (deflating subspaces).
171*> If WANTQ = .FALSE., Q is not referenced.
172*> \endverbatim
173*>
174*> \param[in] LDQ
175*> \verbatim
176*> LDQ is INTEGER
177*> The leading dimension of the array Q. LDQ >= 1.
178*> If WANTQ = .TRUE., LDQ >= N.
179*> \endverbatim
180*>
181*> \param[in,out] Z
182*> \verbatim
183*> Z is COMPLEX array, dimension (LDZ,N)
184*> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
185*> On exit, Z has been postmultiplied by the left unitary
186*> transformation matrix which reorder (A, B); The leading M
187*> columns of Z form orthonormal bases for the specified pair of
188*> left eigenspaces (deflating subspaces).
189*> If WANTZ = .FALSE., Z is not referenced.
190*> \endverbatim
191*>
192*> \param[in] LDZ
193*> \verbatim
194*> LDZ is INTEGER
195*> The leading dimension of the array Z. LDZ >= 1.
196*> If WANTZ = .TRUE., LDZ >= N.
197*> \endverbatim
198*>
199*> \param[out] M
200*> \verbatim
201*> M is INTEGER
202*> The dimension of the specified pair of left and right
203*> eigenspaces, (deflating subspaces) 0 <= M <= N.
204*> \endverbatim
205*>
206*> \param[out] PL
207*> \verbatim
208*> PL is REAL
209*> \endverbatim
210*>
211*> \param[out] PR
212*> \verbatim
213*> PR is REAL
214*>
215*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
216*> reciprocal of the norm of "projections" onto left and right
217*> eigenspace with respect to the selected cluster.
218*> 0 < PL, PR <= 1.
219*> If M = 0 or M = N, PL = PR = 1.
220*> If IJOB = 0, 2 or 3 PL, PR are not referenced.
221*> \endverbatim
222*>
223*> \param[out] DIF
224*> \verbatim
225*> DIF is REAL array, dimension (2).
226*> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
227*> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
228*> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
229*> estimates of Difu and Difl, computed using reversed
230*> communication with CLACN2.
231*> If M = 0 or N, DIF(1:2) = F-norm([A, B]).
232*> If IJOB = 0 or 1, DIF is not referenced.
233*> \endverbatim
234*>
235*> \param[out] WORK
236*> \verbatim
237*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
238*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
239*> \endverbatim
240*>
241*> \param[in] LWORK
242*> \verbatim
243*> LWORK is INTEGER
244*> The dimension of the array WORK. LWORK >= 1
245*> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
246*> If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
247*>
248*> If LWORK = -1, then a workspace query is assumed; the routine
249*> only calculates the optimal size of the WORK array, returns
250*> this value as the first entry of the WORK array, and no error
251*> message related to LWORK is issued by XERBLA.
252*> \endverbatim
253*>
254*> \param[out] IWORK
255*> \verbatim
256*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
257*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
258*> \endverbatim
259*>
260*> \param[in] LIWORK
261*> \verbatim
262*> LIWORK is INTEGER
263*> The dimension of the array IWORK. LIWORK >= 1.
264*> If IJOB = 1, 2 or 4, LIWORK >= N+2;
265*> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
266*>
267*> If LIWORK = -1, then a workspace query is assumed; the
268*> routine only calculates the optimal size of the IWORK array,
269*> returns this value as the first entry of the IWORK array, and
270*> no error message related to LIWORK is issued by XERBLA.
271*> \endverbatim
272*>
273*> \param[out] INFO
274*> \verbatim
275*> INFO is INTEGER
276*> =0: Successful exit.
277*> <0: If INFO = -i, the i-th argument had an illegal value.
278*> =1: Reordering of (A, B) failed because the transformed
279*> matrix pair (A, B) would be too far from generalized
280*> Schur form; the problem is very ill-conditioned.
281*> (A, B) may have been partially reordered.
282*> If requested, 0 is returned in DIF(*), PL and PR.
283*> \endverbatim
284*
285* Authors:
286* ========
287*
288*> \author Univ. of Tennessee
289*> \author Univ. of California Berkeley
290*> \author Univ. of Colorado Denver
291*> \author NAG Ltd.
292*
293*> \ingroup complexOTHERcomputational
294*
295*> \par Further Details:
296* =====================
297*>
298*> \verbatim
299*>
300*> CTGSEN first collects the selected eigenvalues by computing unitary
301*> U and W that move them to the top left corner of (A, B). In other
302*> words, the selected eigenvalues are the eigenvalues of (A11, B11) in
303*>
304*> U**H*(A, B)*W = (A11 A12) (B11 B12) n1
305*> ( 0 A22),( 0 B22) n2
306*> n1 n2 n1 n2
307*>
308*> where N = n1+n2 and U**H means the conjugate transpose of U. The first
309*> n1 columns of U and W span the specified pair of left and right
310*> eigenspaces (deflating subspaces) of (A, B).
311*>
312*> If (A, B) has been obtained from the generalized real Schur
313*> decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
314*> reordered generalized Schur form of (C, D) is given by
315*>
316*> (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
317*>
318*> and the first n1 columns of Q*U and Z*W span the corresponding
319*> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
320*>
321*> Note that if the selected eigenvalue is sufficiently ill-conditioned,
322*> then its value may differ significantly from its value before
323*> reordering.
324*>
325*> The reciprocal condition numbers of the left and right eigenspaces
326*> spanned by the first n1 columns of U and W (or Q*U and Z*W) may
327*> be returned in DIF(1:2), corresponding to Difu and Difl, resp.
328*>
329*> The Difu and Difl are defined as:
330*>
331*> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
332*> and
333*> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
334*>
335*> where sigma-min(Zu) is the smallest singular value of the
336*> (2*n1*n2)-by-(2*n1*n2) matrix
337*>
338*> Zu = [ kron(In2, A11) -kron(A22**H, In1) ]
339*> [ kron(In2, B11) -kron(B22**H, In1) ].
340*>
341*> Here, Inx is the identity matrix of size nx and A22**H is the
342*> conjuguate transpose of A22. kron(X, Y) is the Kronecker product between
343*> the matrices X and Y.
344*>
345*> When DIF(2) is small, small changes in (A, B) can cause large changes
346*> in the deflating subspace. An approximate (asymptotic) bound on the
347*> maximum angular error in the computed deflating subspaces is
348*>
349*> EPS * norm((A, B)) / DIF(2),
350*>
351*> where EPS is the machine precision.
352*>
353*> The reciprocal norm of the projectors on the left and right
354*> eigenspaces associated with (A11, B11) may be returned in PL and PR.
355*> They are computed as follows. First we compute L and R so that
356*> P*(A, B)*Q is block diagonal, where
357*>
358*> P = ( I -L ) n1 Q = ( I R ) n1
359*> ( 0 I ) n2 and ( 0 I ) n2
360*> n1 n2 n1 n2
361*>
362*> and (L, R) is the solution to the generalized Sylvester equation
363*>
364*> A11*R - L*A22 = -A12
365*> B11*R - L*B22 = -B12
366*>
367*> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
368*> An approximate (asymptotic) bound on the average absolute error of
369*> the selected eigenvalues is
370*>
371*> EPS * norm((A, B)) / PL.
372*>
373*> There are also global error bounds which valid for perturbations up
374*> to a certain restriction: A lower bound (x) on the smallest
375*> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
376*> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
377*> (i.e. (A + E, B + F), is
378*>
379*> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
380*>
381*> An approximate bound on x can be computed from DIF(1:2), PL and PR.
382*>
383*> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
384*> (L', R') and unperturbed (L, R) left and right deflating subspaces
385*> associated with the selected cluster in the (1,1)-blocks can be
386*> bounded as
387*>
388*> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
389*> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
390*>
391*> See LAPACK User's Guide section 4.11 or the following references
392*> for more information.
393*>
394*> Note that if the default method for computing the Frobenius-norm-
395*> based estimate DIF is not wanted (see CLATDF), then the parameter
396*> IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
397*> (IJOB = 2 will be used)). See CTGSYL for more details.
398*> \endverbatim
399*
400*> \par Contributors:
401* ==================
402*>
403*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
404*> Umea University, S-901 87 Umea, Sweden.
405*
406*> \par References:
407* ================
408*>
409*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
410*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
411*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
412*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
413*> \n
414*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
415*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
416*> Estimation: Theory, Algorithms and Software, Report
417*> UMINF - 94.04, Department of Computing Science, Umea University,
418*> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
419*> To appear in Numerical Algorithms, 1996.
420*> \n
421*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
422*> for Solving the Generalized Sylvester Equation and Estimating the
423*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
424*> Department of Computing Science, Umea University, S-901 87 Umea,
425*> Sweden, December 1993, Revised April 1994, Also as LAPACK working
426*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
427*> 1996.
428*>
429* =====================================================================
430 SUBROUTINE ctgsen( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
431 $ ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
432 $ WORK, LWORK, IWORK, LIWORK, INFO )
433*
434* -- LAPACK computational routine --
435* -- LAPACK is a software package provided by Univ. of Tennessee, --
436* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
437*
438* .. Scalar Arguments ..
439 LOGICAL WANTQ, WANTZ
440 INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
441 $ m, n
442 REAL PL, PR
443* ..
444* .. Array Arguments ..
445 LOGICAL SELECT( * )
446 INTEGER IWORK( * )
447 REAL DIF( * )
448 COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
449 $ beta( * ), q( ldq, * ), work( * ), z( ldz, * )
450* ..
451*
452* =====================================================================
453*
454* .. Parameters ..
455 INTEGER IDIFJB
456 PARAMETER ( IDIFJB = 3 )
457 REAL ZERO, ONE
458 parameter( zero = 0.0e+0, one = 1.0e+0 )
459* ..
460* .. Local Scalars ..
461 LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
462 INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
463 $ n1, n2
464 REAL DSCALE, DSUM, RDSCAL, SAFMIN
465 COMPLEX TEMP1, TEMP2
466* ..
467* .. Local Arrays ..
468 INTEGER ISAVE( 3 )
469* ..
470* .. External Subroutines ..
471 REAL SLAMCH
472 EXTERNAL CLACN2, CLACPY, CLASSQ, CSCAL, CTGEXC, CTGSYL,
473 $ slamch, xerbla
474* ..
475* .. Intrinsic Functions ..
476 INTRINSIC abs, cmplx, conjg, max, sqrt
477* ..
478* .. Executable Statements ..
479*
480* Decode and test the input parameters
481*
482 info = 0
483 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
484*
485 IF( ijob.LT.0 .OR. ijob.GT.5 ) THEN
486 info = -1
487 ELSE IF( n.LT.0 ) THEN
488 info = -5
489 ELSE IF( lda.LT.max( 1, n ) ) THEN
490 info = -7
491 ELSE IF( ldb.LT.max( 1, n ) ) THEN
492 info = -9
493 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
494 info = -13
495 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
496 info = -15
497 END IF
498*
499 IF( info.NE.0 ) THEN
500 CALL xerbla( 'ctgsen', -INFO )
501 RETURN
502 END IF
503*
504 IERR = 0
505*
506.EQ..OR..GE. WANTP = IJOB1 IJOB4
507.EQ..OR..EQ. WANTD1 = IJOB2 IJOB4
508.EQ..OR..EQ. WANTD2 = IJOB3 IJOB5
509.OR. WANTD = WANTD1 WANTD2
510*
511* Set M to the dimension of the specified pair of deflating
512* subspaces.
513*
514 M = 0
515.NOT..OR..NE. IF( LQUERY IJOB0 ) THEN
516 DO 10 K = 1, N
517 ALPHA( K ) = A( K, K )
518 BETA( K ) = B( K, K )
519.LT. IF( KN ) THEN
520 IF( SELECT( K ) )
521 $ M = M + 1
522 ELSE
523 IF( SELECT( N ) )
524 $ M = M + 1
525 END IF
526 10 CONTINUE
527 END IF
528*
529.EQ..OR..EQ..OR..EQ. IF( IJOB1 IJOB2 IJOB4 ) THEN
530 LWMIN = MAX( 1, 2*M*(N-M) )
531 LIWMIN = MAX( 1, N+2 )
532.EQ..OR..EQ. ELSE IF( IJOB3 IJOB5 ) THEN
533 LWMIN = MAX( 1, 4*M*(N-M) )
534 LIWMIN = MAX( 1, 2*M*(N-M), N+2 )
535 ELSE
536 LWMIN = 1
537 LIWMIN = 1
538 END IF
539*
540 WORK( 1 ) = LWMIN
541 IWORK( 1 ) = LIWMIN
542*
543.LT..AND..NOT. IF( LWORKLWMIN LQUERY ) THEN
544 INFO = -21
545.LT..AND..NOT. ELSE IF( LIWORKLIWMIN LQUERY ) THEN
546 INFO = -23
547 END IF
548*
549.NE. IF( INFO0 ) THEN
550 CALL XERBLA( 'ctgsen', -INFO )
551 RETURN
552 ELSE IF( LQUERY ) THEN
553 RETURN
554 END IF
555*
556* Quick return if possible.
557*
558.EQ..OR..EQ. IF( MN M0 ) THEN
559 IF( WANTP ) THEN
560 PL = ONE
561 PR = ONE
562 END IF
563 IF( WANTD ) THEN
564 DSCALE = ZERO
565 DSUM = ONE
566 DO 20 I = 1, N
567 CALL CLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
568 CALL CLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
569 20 CONTINUE
570 DIF( 1 ) = DSCALE*SQRT( DSUM )
571 DIF( 2 ) = DIF( 1 )
572 END IF
573 GO TO 70
574 END IF
575*
576* Get machine constant
577*
578 SAFMIN = SLAMCH( 's' )
579*
580* Collect the selected blocks at the top-left corner of (A, B).
581*
582 KS = 0
583 DO 30 K = 1, N
584 SWAP = SELECT( K )
585 IF( SWAP ) THEN
586 KS = KS + 1
587*
588* Swap the K-th block to position KS. Compute unitary Q
589* and Z that will swap adjacent diagonal blocks in (A, B).
590*
591.NE. IF( KKS )
592 $ CALL CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
593 $ LDZ, K, KS, IERR )
594*
595.GT. IF( IERR0 ) THEN
596*
597* Swap is rejected: exit.
598*
599 INFO = 1
600 IF( WANTP ) THEN
601 PL = ZERO
602 PR = ZERO
603 END IF
604 IF( WANTD ) THEN
605 DIF( 1 ) = ZERO
606 DIF( 2 ) = ZERO
607 END IF
608 GO TO 70
609 END IF
610 END IF
611 30 CONTINUE
612 IF( WANTP ) THEN
613*
614* Solve generalized Sylvester equation for R and L:
615* A11 * R - L * A22 = A12
616* B11 * R - L * B22 = B12
617*
618 N1 = M
619 N2 = N - M
620 I = N1 + 1
621 CALL CLACPY( 'full', N1, N2, A( 1, I ), LDA, WORK, N1 )
622 CALL CLACPY( 'full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
623 $ N1 )
624 IJB = 0
625 CALL CTGSYL( 'n', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
626 $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
627 $ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
628 $ LWORK-2*N1*N2, IWORK, IERR )
629*
630* Estimate the reciprocal of norms of "projections" onto
631* left and right eigenspaces
632*
633 RDSCAL = ZERO
634 DSUM = ONE
635 CALL CLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
636 PL = RDSCAL*SQRT( DSUM )
637.EQ. IF( PLZERO ) THEN
638 PL = ONE
639 ELSE
640 PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
641 END IF
642 RDSCAL = ZERO
643 DSUM = ONE
644 CALL CLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
645 PR = RDSCAL*SQRT( DSUM )
646.EQ. IF( PRZERO ) THEN
647 PR = ONE
648 ELSE
649 PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
650 END IF
651 END IF
652 IF( WANTD ) THEN
653*
654* Compute estimates Difu and Difl.
655*
656 IF( WANTD1 ) THEN
657 N1 = M
658 N2 = N - M
659 I = N1 + 1
660 IJB = IDIFJB
661*
662* Frobenius norm-based Difu estimate.
663*
664 CALL CTGSYL( 'n', ijb, n1, n2, a, lda, a( i, i ), lda, work,
665 $ n1, b, ldb, b( i, i ), ldb, work( n1*n2+1 ),
666 $ n1, dscale, dif( 1 ), work( n1*n2*2+1 ),
667 $ lwork-2*n1*n2, iwork, ierr )
668*
669* Frobenius norm-based Difl estimate.
670*
671 CALL ctgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda, work,
672 $ n2, b( i, i ), ldb, b, ldb, work( n1*n2+1 ),
673 $ n2, dscale, dif( 2 ), work( n1*n2*2+1 ),
674 $ lwork-2*n1*n2, iwork, ierr )
675 ELSE
676*
677* Compute 1-norm-based estimates of Difu and Difl using
678* reversed communication with CLACN2. In each step a
679* generalized Sylvester equation or a transposed variant
680* is solved.
681*
682 kase = 0
683 n1 = m
684 n2 = n - m
685 i = n1 + 1
686 ijb = 0
687 mn2 = 2*n1*n2
688*
689* 1-norm-based estimate of Difu.
690*
691 40 CONTINUE
692 CALL clacn2( mn2, work( mn2+1 ), work, dif( 1 ), kase,
693 $ isave )
694 IF( kase.NE.0 ) THEN
695 IF( kase.EQ.1 ) THEN
696*
697* Solve generalized Sylvester equation
698*
699 CALL ctgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda,
700 $ work, n1, b, ldb, b( i, i ), ldb,
701 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
702 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
703 $ ierr )
704 ELSE
705*
706* Solve the transposed variant.
707*
708 CALL ctgsyl( 'C', ijb, n1, n2, a, lda, a( i, i ), lda,
709 $ work, n1, b, ldb, b( i, i ), ldb,
710 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
711 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
712 $ ierr )
713 END IF
714 GO TO 40
715 END IF
716 dif( 1 ) = dscale / dif( 1 )
717*
718* 1-norm-based estimate of Difl.
719*
720 50 CONTINUE
721 CALL clacn2( mn2, work( mn2+1 ), work, dif( 2 ), kase,
722 $ isave )
723 IF( kase.NE.0 ) THEN
724 IF( kase.EQ.1 ) THEN
725*
726* Solve generalized Sylvester equation
727*
728 CALL ctgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda,
729 $ work, n2, b( i, i ), ldb, b, ldb,
730 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
731 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
732 $ ierr )
733 ELSE
734*
735* Solve the transposed variant.
736*
737 CALL ctgsyl( 'C', ijb, n2, n1, a( i, i ), lda, a, lda,
738 $ work, n2, b, ldb, b( i, i ), ldb,
739 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
740 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
741 $ ierr )
742 END IF
743 GO TO 50
744 END IF
745 dif( 2 ) = dscale / dif( 2 )
746 END IF
747 END IF
748*
749* If B(K,K) is complex, make it real and positive (normalization
750* of the generalized Schur form) and Store the generalized
751* eigenvalues of reordered pair (A, B)
752*
753 DO 60 k = 1, n
754 dscale = abs( b( k, k ) )
755 IF( dscale.GT.safmin ) THEN
756 temp1 = conjg( b( k, k ) / dscale )
757 temp2 = b( k, k ) / dscale
758 b( k, k ) = dscale
759 CALL cscal( n-k, temp1, b( k, k+1 ), ldb )
760 CALL cscal( n-k+1, temp1, a( k, k ), lda )
761 IF( wantq )
762 $ CALL cscal( n, temp2, q( 1, k ), 1 )
763 ELSE
764 b( k, k ) = cmplx( zero, zero )
765 END IF
766*
767 alpha( k ) = a( k, k )
768 beta( k ) = b( k, k )
769*
770 60 CONTINUE
771*
772 70 CONTINUE
773*
774 work( 1 ) = lwmin
775 iwork( 1 ) = liwmin
776*
777 RETURN
778*
779* End of CTGSEN
780*
781 END
float cmplx[2]
Definition pblas.h:136
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine ctgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
CTGSEN
Definition ctgsen.f:433
#define max(a, b)
Definition macros.h:21