OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cunmqr.f
Go to the documentation of this file.
1*> \brief \b CUNMQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CUNMQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
22* WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER SIDE, TRANS
26* INTEGER INFO, K, LDA, LDC, LWORK, M, N
27* ..
28* .. Array Arguments ..
29* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
30* $ WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> CUNMQR overwrites the general complex M-by-N matrix C with
40*>
41*> SIDE = 'L' SIDE = 'R'
42*> TRANS = 'N': Q * C C * Q
43*> TRANS = 'C': Q**H * C C * Q**H
44*>
45*> where Q is a complex unitary matrix defined as the product of k
46*> elementary reflectors
47*>
48*> Q = H(1) H(2) . . . H(k)
49*>
50*> as returned by CGEQRF. Q is of order M if SIDE = 'L' and of order N
51*> if SIDE = 'R'.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] SIDE
58*> \verbatim
59*> SIDE is CHARACTER*1
60*> = 'L': apply Q or Q**H from the Left;
61*> = 'R': apply Q or Q**H from the Right.
62*> \endverbatim
63*>
64*> \param[in] TRANS
65*> \verbatim
66*> TRANS is CHARACTER*1
67*> = 'N': No transpose, apply Q;
68*> = 'C': Conjugate transpose, apply Q**H.
69*> \endverbatim
70*>
71*> \param[in] M
72*> \verbatim
73*> M is INTEGER
74*> The number of rows of the matrix C. M >= 0.
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*> N is INTEGER
80*> The number of columns of the matrix C. N >= 0.
81*> \endverbatim
82*>
83*> \param[in] K
84*> \verbatim
85*> K is INTEGER
86*> The number of elementary reflectors whose product defines
87*> the matrix Q.
88*> If SIDE = 'L', M >= K >= 0;
89*> if SIDE = 'R', N >= K >= 0.
90*> \endverbatim
91*>
92*> \param[in] A
93*> \verbatim
94*> A is COMPLEX array, dimension (LDA,K)
95*> The i-th column must contain the vector which defines the
96*> elementary reflector H(i), for i = 1,2,...,k, as returned by
97*> CGEQRF in the first k columns of its array argument A.
98*> \endverbatim
99*>
100*> \param[in] LDA
101*> \verbatim
102*> LDA is INTEGER
103*> The leading dimension of the array A.
104*> If SIDE = 'L', LDA >= max(1,M);
105*> if SIDE = 'R', LDA >= max(1,N).
106*> \endverbatim
107*>
108*> \param[in] TAU
109*> \verbatim
110*> TAU is COMPLEX array, dimension (K)
111*> TAU(i) must contain the scalar factor of the elementary
112*> reflector H(i), as returned by CGEQRF.
113*> \endverbatim
114*>
115*> \param[in,out] C
116*> \verbatim
117*> C is COMPLEX array, dimension (LDC,N)
118*> On entry, the M-by-N matrix C.
119*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
120*> \endverbatim
121*>
122*> \param[in] LDC
123*> \verbatim
124*> LDC is INTEGER
125*> The leading dimension of the array C. LDC >= max(1,M).
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
131*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
132*> \endverbatim
133*>
134*> \param[in] LWORK
135*> \verbatim
136*> LWORK is INTEGER
137*> The dimension of the array WORK.
138*> If SIDE = 'L', LWORK >= max(1,N);
139*> if SIDE = 'R', LWORK >= max(1,M).
140*> For good performance, LWORK should generally be larger.
141*>
142*> If LWORK = -1, then a workspace query is assumed; the routine
143*> only calculates the optimal size of the WORK array, returns
144*> this value as the first entry of the WORK array, and no error
145*> message related to LWORK is issued by XERBLA.
146*> \endverbatim
147*>
148*> \param[out] INFO
149*> \verbatim
150*> INFO is INTEGER
151*> = 0: successful exit
152*> < 0: if INFO = -i, the i-th argument had an illegal value
153*> \endverbatim
154*
155* Authors:
156* ========
157*
158*> \author Univ. of Tennessee
159*> \author Univ. of California Berkeley
160*> \author Univ. of Colorado Denver
161*> \author NAG Ltd.
162*
163*> \ingroup complexOTHERcomputational
164*
165* =====================================================================
166 SUBROUTINE cunmqr( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
167 $ WORK, LWORK, INFO )
168*
169* -- LAPACK computational routine --
170* -- LAPACK is a software package provided by Univ. of Tennessee, --
171* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172*
173* .. Scalar Arguments ..
174 CHARACTER SIDE, TRANS
175 INTEGER INFO, K, LDA, LDC, LWORK, M, N
176* ..
177* .. Array Arguments ..
178 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
179 $ work( * )
180* ..
181*
182* =====================================================================
183*
184* .. Parameters ..
185 INTEGER NBMAX, LDT, TSIZE
186 parameter( nbmax = 64, ldt = nbmax+1,
187 $ tsize = ldt*nbmax )
188* ..
189* .. Local Scalars ..
190 LOGICAL LEFT, LQUERY, NOTRAN
191 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
192 $ lwkopt, mi, nb, nbmin, ni, nq, nw
193* ..
194* .. External Functions ..
195 LOGICAL LSAME
196 INTEGER ILAENV
197 EXTERNAL lsame, ilaenv
198* ..
199* .. External Subroutines ..
200 EXTERNAL clarfb, clarft, cunm2r, xerbla
201* ..
202* .. Intrinsic Functions ..
203 INTRINSIC max, min
204* ..
205* .. Executable Statements ..
206*
207* Test the input arguments
208*
209 info = 0
210 left = lsame( side, 'L' )
211 notran = lsame( trans, 'N' )
212 lquery = ( lwork.EQ.-1 )
213*
214* NQ is the order of Q and NW is the minimum dimension of WORK
215*
216 IF( left ) THEN
217 nq = m
218 nw = max( 1, n )
219 ELSE
220 nq = n
221 nw = max( 1, m )
222 END IF
223 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
224 info = -1
225 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
226 info = -2
227 ELSE IF( m.LT.0 ) THEN
228 info = -3
229 ELSE IF( n.LT.0 ) THEN
230 info = -4
231 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
232 info = -5
233 ELSE IF( lda.LT.max( 1, nq ) ) THEN
234 info = -7
235 ELSE IF( ldc.LT.max( 1, m ) ) THEN
236 info = -10
237 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
238 info = -12
239 END IF
240*
241 IF( info.EQ.0 ) THEN
242*
243* Compute the workspace requirements
244*
245 nb = min( nbmax, ilaenv( 1, 'CUNMQR', side // trans, m, n, k,
246 $ -1 ) )
247 lwkopt = nw*nb + tsize
248 work( 1 ) = lwkopt
249 END IF
250*
251 IF( info.NE.0 ) THEN
252 CALL xerbla( 'cunmqr', -INFO )
253 RETURN
254 ELSE IF( LQUERY ) THEN
255 RETURN
256 END IF
257*
258* Quick return if possible
259*
260.EQ..OR..EQ..OR..EQ. IF( M0 N0 K0 ) THEN
261 WORK( 1 ) = 1
262 RETURN
263 END IF
264*
265 NBMIN = 2
266 LDWORK = NW
267.GT..AND..LT. IF( NB1 NBK ) THEN
268.LT. IF( LWORKLWKOPT ) THEN
269 NB = (LWORK-TSIZE) / LDWORK
270 NBMIN = MAX( 2, ILAENV( 2, 'cunmqr', SIDE // TRANS, M, N, K,
271 $ -1 ) )
272 END IF
273 END IF
274*
275.LT..OR..GE. IF( NBNBMIN NBK ) THEN
276*
277* Use unblocked code
278*
279 CALL CUNM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
280 $ IINFO )
281 ELSE
282*
283* Use blocked code
284*
285 IWT = 1 + NW*NB
286.AND..NOT..OR. IF( ( LEFT NOTRAN )
287.NOT..AND. $ ( LEFT NOTRAN ) ) THEN
288 I1 = 1
289 I2 = K
290 I3 = NB
291 ELSE
292 I1 = ( ( K-1 ) / NB )*NB + 1
293 I2 = 1
294 I3 = -NB
295 END IF
296*
297 IF( LEFT ) THEN
298 NI = N
299 JC = 1
300 ELSE
301 MI = M
302 IC = 1
303 END IF
304*
305 DO 10 I = I1, I2, I3
306 IB = MIN( NB, K-I+1 )
307*
308* Form the triangular factor of the block reflector
309* H = H(i) H(i+1) . . . H(i+ib-1)
310*
311 CALL CLARFT( 'forward', 'columnwise', NQ-I+1, IB, A( I, I ),
312 $ LDA, TAU( I ), WORK( IWT ), LDT )
313 IF( LEFT ) THEN
314*
315* H or H**H is applied to C(i:m,1:n)
316*
317 MI = M - I + 1
318 IC = I
319 ELSE
320*
321* H or H**H is applied to C(1:m,i:n)
322*
323 NI = N - I + 1
324 JC = I
325 END IF
326*
327* Apply H or H**H
328*
329 CALL CLARFB( SIDE, TRANS, 'forward', 'columnwise', MI, NI,
330 $ IB, A( I, I ), LDA, WORK( IWT ), LDT,
331 $ C( IC, JC ), LDC, WORK, LDWORK )
332 10 CONTINUE
333 END IF
334 WORK( 1 ) = LWKOPT
335 RETURN
336*
337* End of CUNMQR
338*
339 END
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition clarfb.f:197
subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition clarft.f:163
subroutine cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR
Definition cunmqr.f:168
subroutine cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition cunm2r.f:159
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21