137 SUBROUTINE dgeqlf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
144 INTEGER INFO, LDA, LWORK, M, N
147 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
154 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
155 $ MU, NB, NBMIN, NU, NX
172 lquery = ( lwork.EQ.-1 )
175 ELSE IF( n.LT.0 )
THEN
177 ELSE IF( lda.LT.
max( 1, m ) )
THEN
186 nb = ilaenv( 1,
'DGEQLF',
' ', m, n, -1, -1 )
191 IF( lwork.LT.
max( 1, n ) .AND. .NOT.lquery )
THEN
197 CALL xerbla(
'DGEQLF', -info )
199 ELSE IF( lquery )
THEN
212 IF( nb.GT.1 .AND. nb.LT.k )
THEN
216 nx =
max( 0, ilaenv( 3,
'DGEQLF',
' ', m, n, -1, -1 ) )
223 IF( lwork.LT.iws )
THEN
229 nbmin =
max( 2, ilaenv( 2,
'DGEQLF', '
', M, N, -1,
235.GE..AND..LT..AND..LT.
IF( NBNBMIN NBK NXK ) THEN
240 KI = ( ( K-NX-1 ) / NB )*NB
243 DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
244 IB = MIN( K-I+1, NB )
249 CALL DGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
251.GT.
IF( N-K+I1 ) THEN
256 CALL DLARFT( 'backward
', 'columnwise
', M-K+I+IB-1, IB,
257 $ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
261 CALL DLARFB( 'left
', 'transpose
', 'backward
',
262 $ 'columnwise
', M-K+I+IB-1, N-K+I-1, IB,
263 $ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
264 $ WORK( IB+1 ), LDWORK )
267 MU = M - K + I + NB - 1
268 NU = N - K + I + NB - 1
276.GT..AND..GT.
IF( MU0 NU0 )
277 $ CALL DGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
subroutine xerbla(srname, info)
XERBLA
subroutine dgeqlf(m, n, a, lda, tau, work, lwork, info)
DGEQLF
subroutine dgeql2(m, n, a, lda, tau, work, info)
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.