OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dlascl.f
Go to the documentation of this file.
1*> \brief \b DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLASCL + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlascl.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlascl.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlascl.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER TYPE
25* INTEGER INFO, KL, KU, LDA, M, N
26* DOUBLE PRECISION CFROM, CTO
27* ..
28* .. Array Arguments ..
29* DOUBLE PRECISION A( LDA, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> DLASCL multiplies the M by N real matrix A by the real scalar
39*> CTO/CFROM. This is done without over/underflow as long as the final
40*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
41*> A may be full, upper triangular, lower triangular, upper Hessenberg,
42*> or banded.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] TYPE
49*> \verbatim
50*> TYPE is CHARACTER*1
51*> TYPE indices the storage type of the input matrix.
52*> = 'G': A is a full matrix.
53*> = 'L': A is a lower triangular matrix.
54*> = 'U': A is an upper triangular matrix.
55*> = 'H': A is an upper Hessenberg matrix.
56*> = 'B': A is a symmetric band matrix with lower bandwidth KL
57*> and upper bandwidth KU and with the only the lower
58*> half stored.
59*> = 'Q': A is a symmetric band matrix with lower bandwidth KL
60*> and upper bandwidth KU and with the only the upper
61*> half stored.
62*> = 'Z': A is a band matrix with lower bandwidth KL and upper
63*> bandwidth KU. See DGBTRF for storage details.
64*> \endverbatim
65*>
66*> \param[in] KL
67*> \verbatim
68*> KL is INTEGER
69*> The lower bandwidth of A. Referenced only if TYPE = 'B',
70*> 'Q' or 'Z'.
71*> \endverbatim
72*>
73*> \param[in] KU
74*> \verbatim
75*> KU is INTEGER
76*> The upper bandwidth of A. Referenced only if TYPE = 'B',
77*> 'Q' or 'Z'.
78*> \endverbatim
79*>
80*> \param[in] CFROM
81*> \verbatim
82*> CFROM is DOUBLE PRECISION
83*> \endverbatim
84*>
85*> \param[in] CTO
86*> \verbatim
87*> CTO is DOUBLE PRECISION
88*>
89*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
90*> without over/underflow if the final result CTO*A(I,J)/CFROM
91*> can be represented without over/underflow. CFROM must be
92*> nonzero.
93*> \endverbatim
94*>
95*> \param[in] M
96*> \verbatim
97*> M is INTEGER
98*> The number of rows of the matrix A. M >= 0.
99*> \endverbatim
100*>
101*> \param[in] N
102*> \verbatim
103*> N is INTEGER
104*> The number of columns of the matrix A. N >= 0.
105*> \endverbatim
106*>
107*> \param[in,out] A
108*> \verbatim
109*> A is DOUBLE PRECISION array, dimension (LDA,N)
110*> The matrix to be multiplied by CTO/CFROM. See TYPE for the
111*> storage type.
112*> \endverbatim
113*>
114*> \param[in] LDA
115*> \verbatim
116*> LDA is INTEGER
117*> The leading dimension of the array A.
118*> If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
119*> TYPE = 'B', LDA >= KL+1;
120*> TYPE = 'Q', LDA >= KU+1;
121*> TYPE = 'Z', LDA >= 2*KL+KU+1.
122*> \endverbatim
123*>
124*> \param[out] INFO
125*> \verbatim
126*> INFO is INTEGER
127*> 0 - successful exit
128*> <0 - if INFO = -i, the i-th argument had an illegal value.
129*> \endverbatim
130*
131* Authors:
132* ========
133*
134*> \author Univ. of Tennessee
135*> \author Univ. of California Berkeley
136*> \author Univ. of Colorado Denver
137*> \author NAG Ltd.
138*
139*> \ingroup OTHERauxiliary
140*
141* =====================================================================
142 SUBROUTINE dlascl( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
143*
144* -- LAPACK auxiliary routine --
145* -- LAPACK is a software package provided by Univ. of Tennessee, --
146* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147*
148* .. Scalar Arguments ..
149 CHARACTER TYPE
150 INTEGER INFO, KL, KU, LDA, M, N
151 DOUBLE PRECISION CFROM, CTO
152* ..
153* .. Array Arguments ..
154 DOUBLE PRECISION A( LDA, * )
155* ..
156*
157* =====================================================================
158*
159* .. Parameters ..
160 DOUBLE PRECISION ZERO, ONE
161 parameter( zero = 0.0d0, one = 1.0d0 )
162* ..
163* .. Local Scalars ..
164 LOGICAL DONE
165 INTEGER I, ITYPE, J, K1, K2, K3, K4
166 DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
167* ..
168* .. External Functions ..
169 LOGICAL LSAME, DISNAN
170 DOUBLE PRECISION DLAMCH
171 EXTERNAL lsame, dlamch, disnan
172* ..
173* .. Intrinsic Functions ..
174 INTRINSIC abs, max, min
175* ..
176* .. External Subroutines ..
177 EXTERNAL xerbla
178* ..
179* .. Executable Statements ..
180*
181* Test the input arguments
182*
183 info = 0
184*
185 IF( lsame( TYPE, 'G' ) ) then
186 itype = 0
187 ELSE IF( lsame( TYPE, 'L' ) ) then
188 itype = 1
189 ELSE IF( lsame( TYPE, 'U' ) ) then
190 itype = 2
191 ELSE IF( lsame( TYPE, 'h' ) ) THEN
192 ITYPE = 3
193 ELSE IF( LSAME( TYPE, 'b' ) ) THEN
194 ITYPE = 4
195 ELSE IF( LSAME( TYPE, 'q' ) ) THEN
196 ITYPE = 5
197 ELSE IF( LSAME( TYPE, 'z' ) ) THEN
198 ITYPE = 6
199 ELSE
200 ITYPE = -1
201 END IF
202*
203.EQ. IF( ITYPE-1 ) THEN
204 INFO = -1
205.EQ..OR. ELSE IF( CFROMZERO DISNAN(CFROM) ) THEN
206 INFO = -4
207 ELSE IF( DISNAN(CTO) ) THEN
208 INFO = -5
209.LT. ELSE IF( M0 ) THEN
210 INFO = -6
211.LT..OR..EQ..AND..NE..OR. ELSE IF( N0 ( ITYPE4 NM )
212.EQ..AND..NE. $ ( ITYPE5 NM ) ) THEN
213 INFO = -7
214.LE..AND..LT. ELSE IF( ITYPE3 LDAMAX( 1, M ) ) THEN
215 INFO = -9
216.GE. ELSE IF( ITYPE4 ) THEN
217.LT..OR..GT. IF( KL0 KLMAX( M-1, 0 ) ) THEN
218 INFO = -2
219.LT..OR..GT..OR. ELSE IF( KU0 KUMAX( N-1, 0 )
220.EQ..OR..EQ..AND..NE. $ ( ( ITYPE4 ITYPE5 ) KLKU ) )
221 $ THEN
222 INFO = -3
223.EQ..AND..LT..OR. ELSE IF( ( ITYPE4 LDAKL+1 )
224.EQ..AND..LT..OR. $ ( ITYPE5 LDAKU+1 )
225.EQ..AND..LT. $ ( ITYPE6 LDA2*KL+KU+1 ) ) THEN
226 INFO = -9
227 END IF
228 END IF
229*
230.NE. IF( INFO0 ) THEN
231 CALL XERBLA( 'dlascl', -INFO )
232 RETURN
233 END IF
234*
235* Quick return if possible
236*
237.EQ..OR..EQ. IF( N0 M0 )
238 $ RETURN
239*
240* Get machine parameters
241*
242 SMLNUM = DLAMCH( 's' )
243 BIGNUM = ONE / SMLNUM
244*
245 CFROMC = CFROM
246 CTOC = CTO
247*
248 10 CONTINUE
249 CFROM1 = CFROMC*SMLNUM
250.EQ. IF( CFROM1CFROMC ) THEN
251! CFROMC is an inf. Multiply by a correctly signed zero for
252! finite CTOC, or a NaN if CTOC is infinite.
253 MUL = CTOC / CFROMC
254 DONE = .TRUE.
255 CTO1 = CTOC
256 ELSE
257 CTO1 = CTOC / BIGNUM
258.EQ. IF( CTO1CTOC ) THEN
259! CTOC is either 0 or an inf. In both cases, CTOC itself
260! serves as the correct multiplication factor.
261 MUL = CTOC
262 DONE = .TRUE.
263 CFROMC = ONE
264.GT..AND..NE. ELSE IF( ABS( CFROM1 )ABS( CTOC ) CTOCZERO ) THEN
265 MUL = SMLNUM
266 DONE = .FALSE.
267 CFROMC = CFROM1
268.GT. ELSE IF( ABS( CTO1 )ABS( CFROMC ) ) THEN
269 MUL = BIGNUM
270 DONE = .FALSE.
271 CTOC = CTO1
272 ELSE
273 MUL = CTOC / CFROMC
274 DONE = .TRUE.
275 END IF
276 END IF
277*
278.EQ. IF( ITYPE0 ) THEN
279*
280* Full matrix
281*
282 DO 30 J = 1, N
283 DO 20 I = 1, M
284 A( I, J ) = A( I, J )*MUL
285 20 CONTINUE
286 30 CONTINUE
287*
288.EQ. ELSE IF( ITYPE1 ) THEN
289*
290* Lower triangular matrix
291*
292 DO 50 J = 1, N
293 DO 40 I = J, M
294 A( I, J ) = A( I, J )*MUL
295 40 CONTINUE
296 50 CONTINUE
297*
298.EQ. ELSE IF( ITYPE2 ) THEN
299*
300* Upper triangular matrix
301*
302 DO 70 J = 1, N
303 DO 60 I = 1, MIN( J, M )
304 A( I, J ) = A( I, J )*MUL
305 60 CONTINUE
306 70 CONTINUE
307*
308.EQ. ELSE IF( ITYPE3 ) THEN
309*
310* Upper Hessenberg matrix
311*
312 DO 90 J = 1, N
313 DO 80 I = 1, MIN( J+1, M )
314 A( I, J ) = A( I, J )*MUL
315 80 CONTINUE
316 90 CONTINUE
317*
318.EQ. ELSE IF( ITYPE4 ) THEN
319*
320* Lower half of a symmetric band matrix
321*
322 K3 = KL + 1
323 K4 = N + 1
324 DO 110 J = 1, N
325 DO 100 I = 1, MIN( K3, K4-J )
326 A( I, J ) = A( I, J )*MUL
327 100 CONTINUE
328 110 CONTINUE
329*
330.EQ. ELSE IF( ITYPE5 ) THEN
331*
332* Upper half of a symmetric band matrix
333*
334 K1 = KU + 2
335 K3 = KU + 1
336 DO 130 J = 1, N
337 DO 120 I = MAX( K1-J, 1 ), K3
338 A( I, J ) = A( I, J )*MUL
339 120 CONTINUE
340 130 CONTINUE
341*
342.EQ. ELSE IF( ITYPE6 ) THEN
343*
344* Band matrix
345*
346 K1 = KL + KU + 2
347 K2 = KL + 1
348 K3 = 2*KL + KU + 1
349 K4 = KL + KU + 1 + M
350 DO 150 J = 1, N
351 DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
352 A( I, J ) = A( I, J )*MUL
353 140 CONTINUE
354 150 CONTINUE
355*
356 END IF
357*
358.NOT. IF( DONE )
359 $ GO TO 10
360*
361 RETURN
362*
363* End of DLASCL
364*
365 END
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21