OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dsytri2x.f
Go to the documentation of this file.
1*> \brief \b DSYTRI2X
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSYTRI2X + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri2x.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri2x.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri2x.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER INFO, LDA, N, NB
26* ..
27* .. Array Arguments ..
28* INTEGER IPIV( * )
29* DOUBLE PRECISION A( LDA, * ), WORK( N+NB+1,* )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> DSYTRI2X computes the inverse of a real symmetric indefinite matrix
39*> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
40*> DSYTRF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*> UPLO is CHARACTER*1
49*> Specifies whether the details of the factorization are stored
50*> as an upper or lower triangular matrix.
51*> = 'U': Upper triangular, form is A = U*D*U**T;
52*> = 'L': Lower triangular, form is A = L*D*L**T.
53*> \endverbatim
54*>
55*> \param[in] N
56*> \verbatim
57*> N is INTEGER
58*> The order of the matrix A. N >= 0.
59*> \endverbatim
60*>
61*> \param[in,out] A
62*> \verbatim
63*> A is DOUBLE PRECISION array, dimension (LDA,N)
64*> On entry, the NNB diagonal matrix D and the multipliers
65*> used to obtain the factor U or L as computed by DSYTRF.
66*>
67*> On exit, if INFO = 0, the (symmetric) inverse of the original
68*> matrix. If UPLO = 'U', the upper triangular part of the
69*> inverse is formed and the part of A below the diagonal is not
70*> referenced; if UPLO = 'L' the lower triangular part of the
71*> inverse is formed and the part of A above the diagonal is
72*> not referenced.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The leading dimension of the array A. LDA >= max(1,N).
79*> \endverbatim
80*>
81*> \param[in] IPIV
82*> \verbatim
83*> IPIV is INTEGER array, dimension (N)
84*> Details of the interchanges and the NNB structure of D
85*> as determined by DSYTRF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3)
91*> \endverbatim
92*>
93*> \param[in] NB
94*> \verbatim
95*> NB is INTEGER
96*> Block size
97*> \endverbatim
98*>
99*> \param[out] INFO
100*> \verbatim
101*> INFO is INTEGER
102*> = 0: successful exit
103*> < 0: if INFO = -i, the i-th argument had an illegal value
104*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
105*> inverse could not be computed.
106*> \endverbatim
107*
108* Authors:
109* ========
110*
111*> \author Univ. of Tennessee
112*> \author Univ. of California Berkeley
113*> \author Univ. of Colorado Denver
114*> \author NAG Ltd.
115*
116*> \ingroup doubleSYcomputational
117*
118* =====================================================================
119 SUBROUTINE dsytri2x( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
120*
121* -- LAPACK computational routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 CHARACTER UPLO
127 INTEGER INFO, LDA, N, NB
128* ..
129* .. Array Arguments ..
130 INTEGER IPIV( * )
131 DOUBLE PRECISION A( LDA, * ), WORK( N+NB+1,* )
132* ..
133*
134* =====================================================================
135*
136* .. Parameters ..
137 DOUBLE PRECISION ONE, ZERO
138 parameter( one = 1.0d+0, zero = 0.0d+0 )
139* ..
140* .. Local Scalars ..
141 LOGICAL UPPER
142 INTEGER I, IINFO, IP, K, CUT, NNB
143 INTEGER COUNT
144 INTEGER J, U11, INVD
145
146 DOUBLE PRECISION AK, AKKP1, AKP1, D, T
147 DOUBLE PRECISION U01_I_J, U01_IP1_J
148 DOUBLE PRECISION U11_I_J, U11_IP1_J
149* ..
150* .. External Functions ..
151 LOGICAL LSAME
152 EXTERNAL lsame
153* ..
154* .. External Subroutines ..
155 EXTERNAL dsyconv, xerbla, dtrtri
156 EXTERNAL dgemm, dtrmm, dsyswapr
157* ..
158* .. Intrinsic Functions ..
159 INTRINSIC max
160* ..
161* .. Executable Statements ..
162*
163* Test the input parameters.
164*
165 info = 0
166 upper = lsame( uplo, 'U' )
167 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
168 info = -1
169 ELSE IF( n.LT.0 ) THEN
170 info = -2
171 ELSE IF( lda.LT.max( 1, n ) ) THEN
172 info = -4
173 END IF
174*
175* Quick return if possible
176*
177*
178 IF( info.NE.0 ) THEN
179 CALL xerbla( 'DSYTRI2X', -info )
180 RETURN
181 END IF
182 IF( n.EQ.0 )
183 $ RETURN
184*
185* Convert A
186* Workspace got Non-diag elements of D
187*
188 CALL dsyconv( uplo, 'C', n, a, lda, ipiv, work, iinfo )
189*
190* Check that the diagonal matrix D is nonsingular.
191*
192 IF( upper ) THEN
193*
194* Upper triangular storage: examine D from bottom to top
195*
196 DO info = n, 1, -1
197 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
198 $ RETURN
199 END DO
200 ELSE
201*
202* Lower triangular storage: examine D from top to bottom.
203*
204 DO info = 1, n
205 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
206 $ RETURN
207 END DO
208 END IF
209 info = 0
210*
211* Splitting Workspace
212* U01 is a block (N,NB+1)
213* The first element of U01 is in WORK(1,1)
214* U11 is a block (NB+1,NB+1)
215* The first element of U11 is in WORK(N+1,1)
216 u11 = n
217* INVD is a block (N,2)
218* The first element of INVD is in WORK(1,INVD)
219 invd = nb+2
220
221 IF( upper ) THEN
222*
223* invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
224*
225 CALL dtrtri( uplo, 'u', N, A, LDA, INFO )
226*
227* inv(D) and inv(D)*inv(U)
228*
229 K=1
230.LE. DO WHILE ( K N )
231.GT. IF( IPIV( K )0 ) THEN
232* 1 x 1 diagonal NNB
233 WORK(K,INVD) = ONE / A( K, K )
234 WORK(K,INVD+1) = 0
235 K=K+1
236 ELSE
237* 2 x 2 diagonal NNB
238 T = WORK(K+1,1)
239 AK = A( K, K ) / T
240 AKP1 = A( K+1, K+1 ) / T
241 AKKP1 = WORK(K+1,1) / T
242 D = T*( AK*AKP1-ONE )
243 WORK(K,INVD) = AKP1 / D
244 WORK(K+1,INVD+1) = AK / D
245 WORK(K,INVD+1) = -AKKP1 / D
246 WORK(K+1,INVD) = -AKKP1 / D
247 K=K+2
248 END IF
249 END DO
250*
251* inv(U**T) = (inv(U))**T
252*
253* inv(U**T)*inv(D)*inv(U)
254*
255 CUT=N
256.GT. DO WHILE (CUT 0)
257 NNB=NB
258.LE. IF (CUT NNB) THEN
259 NNB=CUT
260 ELSE
261 COUNT = 0
262* count negative elements,
263 DO I=CUT+1-NNB,CUT
264.LT. IF (IPIV(I) 0) COUNT=COUNT+1
265 END DO
266* need a even number for a clear cut
267.EQ. IF (MOD(COUNT,2) 1) NNB=NNB+1
268 END IF
269
270 CUT=CUT-NNB
271*
272* U01 Block
273*
274 DO I=1,CUT
275 DO J=1,NNB
276 WORK(I,J)=A(I,CUT+J)
277 END DO
278 END DO
279*
280* U11 Block
281*
282 DO I=1,NNB
283 WORK(U11+I,I)=ONE
284 DO J=1,I-1
285 WORK(U11+I,J)=ZERO
286 END DO
287 DO J=I+1,NNB
288 WORK(U11+I,J)=A(CUT+I,CUT+J)
289 END DO
290 END DO
291*
292* invD*U01
293*
294 I=1
295.LE. DO WHILE (I CUT)
296 IF (IPIV(I) > 0) THEN
297 DO J=1,NNB
298 WORK(I,J)=WORK(I,INVD)*WORK(I,J)
299 END DO
300 I=I+1
301 ELSE
302 DO J=1,NNB
303 U01_I_J = WORK(I,J)
304 U01_IP1_J = WORK(I+1,J)
305 WORK(I,J)=WORK(I,INVD)*U01_I_J+
306 $ WORK(I,INVD+1)*U01_IP1_J
307 WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
308 $ WORK(I+1,INVD+1)*U01_IP1_J
309 END DO
310 I=I+2
311 END IF
312 END DO
313*
314* invD1*U11
315*
316 I=1
317.LE. DO WHILE (I NNB)
318 IF (IPIV(CUT+I) > 0) THEN
319 DO J=I,NNB
320 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
321 END DO
322 I=I+1
323 ELSE
324 DO J=I,NNB
325 U11_I_J = WORK(U11+I,J)
326 U11_IP1_J = WORK(U11+I+1,J)
327 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
328 $ WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
329 WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
330 $ WORK(CUT+I+1,INVD+1)*U11_IP1_J
331 END DO
332 I=I+2
333 END IF
334 END DO
335*
336* U11**T*invD1*U11->U11
337*
338 CALL DTRMM('l','u','t','u',NNB, NNB,
339 $ ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
340*
341 DO I=1,NNB
342 DO J=I,NNB
343 A(CUT+I,CUT+J)=WORK(U11+I,J)
344 END DO
345 END DO
346*
347* U01**T*invD*U01->A(CUT+I,CUT+J)
348*
349 CALL DGEMM('t','n',NNB,NNB,CUT,ONE,A(1,CUT+1),LDA,
350 $ WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
351
352*
353* U11 = U11**T*invD1*U11 + U01**T*invD*U01
354*
355 DO I=1,NNB
356 DO J=I,NNB
357 A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
358 END DO
359 END DO
360*
361* U01 = U00**T*invD0*U01
362*
363 CALL DTRMM('l',UPLO,'t','u',CUT, NNB,
364 $ ONE,A,LDA,WORK,N+NB+1)
365
366*
367* Update U01
368*
369 DO I=1,CUT
370 DO J=1,NNB
371 A(I,CUT+J)=WORK(I,J)
372 END DO
373 END DO
374*
375* Next Block
376*
377 END DO
378*
379* Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
380*
381 I=1
382.LE. DO WHILE ( I N )
383.GT. IF( IPIV(I) 0 ) THEN
384 IP=IPIV(I)
385.LT. IF (I IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
386.GT. IF (I IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
387 ELSE
388 IP=-IPIV(I)
389 I=I+1
390.LT. IF ( (I-1) IP)
391 $ CALL DSYSWAPR( UPLO, N, A, LDA, I-1 ,IP )
392.GT. IF ( (I-1) IP)
393 $ CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I-1 )
394 ENDIF
395 I=I+1
396 END DO
397 ELSE
398*
399* LOWER...
400*
401* invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
402*
403 CALL DTRTRI( UPLO, 'u', N, A, LDA, INFO )
404*
405* inv(D) and inv(D)*inv(U)
406*
407 K=N
408.GE. DO WHILE ( K 1 )
409.GT. IF( IPIV( K )0 ) THEN
410* 1 x 1 diagonal NNB
411 WORK(K,INVD) = ONE / A( K, K )
412 WORK(K,INVD+1) = 0
413 K=K-1
414 ELSE
415* 2 x 2 diagonal NNB
416 T = WORK(K-1,1)
417 AK = A( K-1, K-1 ) / T
418 AKP1 = A( K, K ) / T
419 AKKP1 = WORK(K-1,1) / T
420 D = T*( AK*AKP1-ONE )
421 WORK(K-1,INVD) = AKP1 / D
422 WORK(K,INVD) = AK / D
423 WORK(K,INVD+1) = -AKKP1 / D
424 WORK(K-1,INVD+1) = -AKKP1 / D
425 K=K-2
426 END IF
427 END DO
428*
429* inv(U**T) = (inv(U))**T
430*
431* inv(U**T)*inv(D)*inv(U)
432*
433 CUT=0
434.LT. DO WHILE (CUT N)
435 NNB=NB
436.GT. IF (CUT + NNB N) THEN
437 NNB=N-CUT
438 ELSE
439 COUNT = 0
440* count negative elements,
441 DO I=CUT+1,CUT+NNB
442.LT. IF (IPIV(I) 0) COUNT=COUNT+1
443 END DO
444* need a even number for a clear cut
445.EQ. IF (MOD(COUNT,2) 1) NNB=NNB+1
446 END IF
447* L21 Block
448 DO I=1,N-CUT-NNB
449 DO J=1,NNB
450 WORK(I,J)=A(CUT+NNB+I,CUT+J)
451 END DO
452 END DO
453* L11 Block
454 DO I=1,NNB
455 WORK(U11+I,I)=ONE
456 DO J=I+1,NNB
457 WORK(U11+I,J)=ZERO
458 END DO
459 DO J=1,I-1
460 WORK(U11+I,J)=A(CUT+I,CUT+J)
461 END DO
462 END DO
463*
464* invD*L21
465*
466 I=N-CUT-NNB
467.GE. DO WHILE (I 1)
468 IF (IPIV(CUT+NNB+I) > 0) THEN
469 DO J=1,NNB
470 WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
471 END DO
472 I=I-1
473 ELSE
474 DO J=1,NNB
475 U01_I_J = WORK(I,J)
476 U01_IP1_J = WORK(I-1,J)
477 WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
478 $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
479 WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
480 $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
481 END DO
482 I=I-2
483 END IF
484 END DO
485*
486* invD1*L11
487*
488 I=NNB
489.GE. DO WHILE (I 1)
490 IF (IPIV(CUT+I) > 0) THEN
491 DO J=1,NNB
492 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
493 END DO
494 I=I-1
495 ELSE
496 DO J=1,NNB
497 U11_I_J = WORK(U11+I,J)
498 U11_IP1_J = WORK(U11+I-1,J)
499 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
500 $ WORK(CUT+I,INVD+1)*U11_IP1_J
501 WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
502 $ WORK(CUT+I-1,INVD)*U11_IP1_J
503 END DO
504 I=I-2
505 END IF
506 END DO
507*
508* L11**T*invD1*L11->L11
509*
510 CALL DTRMM('l',UPLO,'t','u',NNB, NNB,
511 $ ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
512
513*
514 DO I=1,NNB
515 DO J=1,I
516 A(CUT+I,CUT+J)=WORK(U11+I,J)
517 END DO
518 END DO
519*
520.LT. IF ( (CUT+NNB) N ) THEN
521*
522* L21**T*invD2*L21->A(CUT+I,CUT+J)
523*
524 CALL DGEMM('t','n',NNB,NNB,N-NNB-CUT,ONE,A(CUT+NNB+1,CUT+1)
525 $ ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
526
527*
528* L11 = L11**T*invD1*L11 + U01**T*invD*U01
529*
530 DO I=1,NNB
531 DO J=1,I
532 A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
533 END DO
534 END DO
535*
536* L01 = L22**T*invD2*L21
537*
538 CALL DTRMM('l',UPLO,'t','u', N-NNB-CUT, NNB,
539 $ ONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
540*
541* Update L21
542*
543 DO I=1,N-CUT-NNB
544 DO J=1,NNB
545 A(CUT+NNB+I,CUT+J)=WORK(I,J)
546 END DO
547 END DO
548
549 ELSE
550*
551* L11 = L11**T*invD1*L11
552*
553 DO I=1,NNB
554 DO J=1,I
555 A(CUT+I,CUT+J)=WORK(U11+I,J)
556 END DO
557 END DO
558 END IF
559*
560* Next Block
561*
562 CUT=CUT+NNB
563 END DO
564*
565* Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
566*
567 I=N
568.GE. DO WHILE ( I 1 )
569.GT. IF( IPIV(I) 0 ) THEN
570 IP=IPIV(I)
571.LT. IF (I IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
572.GT. IF (I IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
573 ELSE
574 IP=-IPIV(I)
575.LT. IF ( I IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
576.GT. IF ( I IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP, I )
577 I=I-1
578 ENDIF
579 I=I-1
580 END DO
581 END IF
582*
583 RETURN
584*
585* End of DSYTRI2X
586*
587 END
588
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dtrtri(uplo, diag, n, a, lda, info)
DTRTRI
Definition dtrtri.f:109
subroutine dsyswapr(uplo, n, a, lda, i1, i2)
DSYSWAPR applies an elementary permutation on the rows and columns of a symmetric matrix.
Definition dsyswapr.f:102
subroutine dsyconv(uplo, way, n, a, lda, ipiv, e, info)
DSYCONV
Definition dsyconv.f:114
subroutine dsytri2x(uplo, n, a, lda, ipiv, work, nb, info)
DSYTRI2X
Definition dsytri2x.f:120
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:187
subroutine dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRMM
Definition dtrmm.f:177
#define max(a, b)
Definition macros.h:21