OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
egrad2.F File Reference
#include "implicit_f.inc"
#include "mvsiz_p.inc"
#include "com01_c.inc"
#include "vect01_c.inc"
#include "tabsiz_c.inc"

Go to the source code of this file.

Functions/Subroutines

subroutine egrad2 (ixq, x, ale_connect, grad)

Function/Subroutine Documentation

◆ egrad2()

subroutine egrad2 ( integer, dimension(7,sixq/nixq), intent(in) ixq,
dimension(3,sx/3), intent(in) x,
type(t_ale_connectivity), intent(in) ale_connect,
dimension(4,*), intent(inout) grad )

Definition at line 30 of file egrad2.F.

31C-----------------------------------------------
32C M o d u l e s
33C-----------------------------------------------
35C-----------------------------------------------
36C I m p l i c i t T y p e s
37C-----------------------------------------------
38#include "implicit_f.inc"
39C-----------------------------------------------
40C G l o b a l P a r a m e t e r s
41C-----------------------------------------------
42#include "mvsiz_p.inc"
43C-----------------------------------------------
44C C o m m o n B l o c k s
45C-----------------------------------------------
46#include "com01_c.inc"
47#include "vect01_c.inc"
48#include "tabsiz_c.inc"
49C-----------------------------------------------
50C D u m m y A r g u m e n t s
51C-----------------------------------------------
52! SPMD CASE : SIXQ >= NIXQ*NUMELQ (SIXQ = NIXQ*NUMELQ_L+NIXQ*NQVOIS_L)
53! IXQ(1:NIXQ, 1:NUMELQ) local elems
54! (1:NIXQ, NUMELQ+1:) additional elems (also on adjacent domains but connected to the boundary of the current domain)
55!
56! SPMD CASE : SX >= 3*NUMNOD (SX = 3*(NUMNOD_L+NRCVVOIS_L))
57! X(1:3,1:NUMNOD) : local nodes
58! (1:3, NUMNOD+1:) additional nodes (also on adjacent domains but connected to the boundary of the current domain)
59C-----------------------------------------------
60 INTEGER,INTENT(IN) :: IXQ(7,SIXQ/NIXQ)
61 my_real,INTENT(IN) :: x(3,sx/3)
62 my_real,INTENT(INOUT) :: grad(4,*)
63 TYPE(t_ale_connectivity), INTENT(IN) :: ALE_CONNECT
64C-----------------------------------------------
65C L o c a l V a r i a b l e s
66C-----------------------------------------------
67 INTEGER I, II, IE, IV1, IV2, IV3, IV4, IAD2
69 . x1(mvsiz), x2(mvsiz), x3(mvsiz), x4(mvsiz), y1(mvsiz), y2(mvsiz), y3(mvsiz), y4(mvsiz),
70 . z1(mvsiz), z2(mvsiz), z3(mvsiz), z4(mvsiz), yc(mvsiz), zc(mvsiz),
71 . n1y(mvsiz), n2y(mvsiz), n3y(mvsiz), n4y(mvsiz), n1z(mvsiz),
72 . n2z(mvsiz), n3z(mvsiz), n4z(mvsiz), dd1(mvsiz), dd2(mvsiz), dd3(mvsiz), dd4(mvsiz),
73 . d1y(mvsiz), d2y(mvsiz), d3y(mvsiz), d4y(mvsiz), d1z(mvsiz),
74 . d2z(mvsiz), d3z(mvsiz), d4z(mvsiz)
75C-----------------------------------------------
76 DO i=lft,llt
77 ii=i+nft
78 x1(i)=x(1,ixq(2,ii))
79 y1(i)=x(2,ixq(2,ii))
80 z1(i)=x(3,ixq(2,ii))
81
82 x2(i)=x(1,ixq(3,ii))
83 y2(i)=x(2,ixq(3,ii))
84 z2(i)=x(3,ixq(3,ii))
85
86 x3(i)=x(1,ixq(4,ii))
87 y3(i)=x(2,ixq(4,ii))
88 z3(i)=x(3,ixq(4,ii))
89
90 x4(i)=x(1,ixq(5,ii))
91 y4(i)=x(2,ixq(5,ii))
92 z4(i)=x(3,ixq(5,ii))
93 ENDDO
94C-------------------------------------------
95C NORMAL VECTORS ( N = 2S.n where |n|=1)
96C-------------------------------------------
97 DO i=lft,llt
98 n1y(i)= (z2(i)-z1(i))
99 n1z(i)=-(y2(i)-y1(i))
100
101 n2y(i)= (z3(i)-z2(i))
102 n2z(i)=-(y3(i)-y2(i))
103
104 n3y(i)= (z4(i)-z3(i))
105 n3z(i)=-(y4(i)-y3(i))
106
107 n4y(i)= (z1(i)-z4(i))
108 n4z(i)=-(y1(i)-y4(i))
109 yc(i) = (y1(i)+y2(i)+y3(i)+y4(i))
110 zc(i) = (z1(i)+z2(i)+z3(i)+z4(i))
111 ENDDO
112
113 IF(n2d == 1)THEN
114 DO i=lft,llt
115 n1y(i) = n1y(i)*(y1(i)+y2(i))*half
116 n1z(i) = n1z(i)*(y1(i)+y2(i))*half
117 n2y(i) = n2y(i)*(y2(i)+y3(i))*half
118 n2z(i) = n2z(i)*(y2(i)+y3(i))*half
119 n3y(i) = n3y(i)*(y3(i)+y4(i))*half
120 n3z(i) = n3z(i)*(y3(i)+y4(i))*half
121 n4y(i) = n4y(i)*(y1(i)+y4(i))*half
122 n4z(i) = n4z(i)*(y1(i)+y4(i))*half
123 ENDDO
124 ENDIF
125C-------------------------------------------------------------
126C DISTANCE BETWEEN ELEMS ( * 4. )
127C-------------------------------------------------------------
128 DO i=lft,llt
129 ie =nft+i
130 iad2 = ale_connect%ee_connect%iad_connect(ie)
131 iv1 = ale_connect%ee_connect%connected(iad2 + 1 - 1)
132 iv2 = ale_connect%ee_connect%connected(iad2 + 2 - 1)
133 iv3 = ale_connect%ee_connect%connected(iad2 + 3 - 1)
134 iv4 = ale_connect%ee_connect%connected(iad2 + 4 - 1)
135 IF(iv1 <= 0) iv1=ie
136 IF(iv2 <= 0) iv2=ie
137 IF(iv3 <= 0) iv3=ie
138 IF(iv4 <= 0) iv4=ie
139 d1y(i) = - yc(i) + x(2,ixq(2,iv1)) + x(2,ixq(3,iv1)) + x(2,ixq(4,iv1)) + x(2,ixq(5,iv1))
140 d1z(i) = - zc(i) + x(3,ixq(2,iv1)) + x(3,ixq(3,iv1)) + x(3,ixq(4,iv1)) + x(3,ixq(5,iv1))
141 d2y(i) = - yc(i) + x(2,ixq(2,iv2)) + x(2,ixq(3,iv2)) + x(2,ixq(4,iv2)) + x(2,ixq(5,iv2))
142 d2z(i) = - zc(i) + x(3,ixq(2,iv2)) + x(3,ixq(3,iv2)) + x(3,ixq(4,iv2)) + x(3,ixq(5,iv2))
143 d3y(i) = - yc(i) + x(2,ixq(2,iv3)) + x(2,ixq(3,iv3)) + x(2,ixq(4,iv3)) + x(2,ixq(5,iv3))
144 d3z(i) = - zc(i) + x(3,ixq(2,iv3)) + x(3,ixq(3,iv3)) + x(3,ixq(4,iv3)) + x(3,ixq(5,iv3))
145 d4y(i) = - yc(i) + x(2,ixq(2,iv4)) + x(2,ixq(3,iv4)) + x(2,ixq(4,iv4)) + x(2,ixq(5,iv4))
146 d4z(i) = - zc(i) + x(3,ixq(2,iv4)) + x(3,ixq(3,iv4)) + x(3,ixq(4,iv4)) + x(3,ixq(5,iv4))
147 ENDDO
148
149 ! DiX = 8.dx[i]
150 ! DiY = 8.dy[i]
151 ! DiZ = 8.dz[i]
152 ! => DDi = 64 (dx^2 + dy^2 + dz^2)
153 DO i=lft,llt
154 dd1(i)=d1y(i)**2+d1z(i)**2
155 dd2(i)=d2y(i)**2+d2z(i)**2
156 dd3(i)=d3y(i)**2+d3z(i)**2
157 dd4(i)=d4y(i)**2+d4z(i)**2
158 ENDDO
159C---------------------------------
160C GRADIENTS * SURFACES
161C Ni=2Sn, |n|=1
162C DiX = 8.dx[i], DiY = 8.dy[i], DiZ = 8.dz[i],
163C DDi = 64 (dx^2 + dy^2 + dz^2)
164C Finally
165C GRADi = Si . < di,ni > / di^2
166C where di is the distance between the centers of the two elements (current and adjacent #i)
167C---------------------------------
168 DO i=lft,llt
169 grad(1,i)= four*(d1y(i)*n1y(i)+d1z(i)*n1z(i)) / max(em15,dd1(i))
170 grad(2,i)= four*(d2y(i)*n2y(i)+d2z(i)*n2z(i)) / max(em15,dd2(i))
171 grad(3,i)= four*(d3y(i)*n3y(i)+d3z(i)*n3z(i)) / max(em15,dd3(i))
172 grad(4,i)= four*(d4y(i)*n4y(i)+d4z(i)*n4z(i)) / max(em15,dd4(i))
173 ENDDO
174C-----------------------------------------------
175 RETURN
#define my_real
Definition cppsort.cpp:32
#define max(a, b)
Definition macros.h:21