OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches

Functions

subroutine dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
  DGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)
subroutine dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
  DGBSVX computes the solution to system of linear equations A * X = B for GB matrices
subroutine dgbsvxx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
  DGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Detailed Description

This is the group of double solve driver functions for GB matrices

Function Documentation

◆ dgbsv()

subroutine dgbsv ( integer n,
integer kl,
integer ku,
integer nrhs,
double precision, dimension( ldab, * ) ab,
integer ldab,
integer, dimension( * ) ipiv,
double precision, dimension( ldb, * ) b,
integer ldb,
integer info )

DGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Download DGBSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGBSV computes the solution to a real system of linear equations
!> A * X = B, where A is a band matrix of order N with KL subdiagonals
!> and KU superdiagonals, and X and B are N-by-NRHS matrices.
!>
!> The LU decomposition with partial pivoting and row interchanges is
!> used to factor A as A = L * U, where L is a product of permutation
!> and unit lower triangular matrices with KL subdiagonals, and U is
!> upper triangular with KL+KU superdiagonals.  The factored form of A
!> is then used to solve the system of equations A * X = B.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows KL+1 to
!>          2*KL+KU+1; rows 1 to KL of the array need not be set.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
!>          On exit, details of the factorization: U is stored as an
!>          upper triangular band matrix with KL+KU superdiagonals in
!>          rows 1 to KL+KU+1, and the multipliers used during the
!>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
!>          See below for further details.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices that define the permutation matrix P;
!>          row i of the matrix was interchanged with row IPIV(i).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
!>                has been completed, but the factor U is exactly
!>                singular, and the solution has not been computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The band storage scheme is illustrated by the following example, when
!>  M = N = 6, KL = 2, KU = 1:
!>
!>  On entry:                       On exit:
!>
!>      *    *    *    +    +    +       *    *    *   u14  u25  u36
!>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
!>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
!>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
!>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
!>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
!>
!>  Array elements marked * are not used by the routine; elements marked
!>  + need not be set on entry, but are required by the routine to store
!>  elements of U because of fill-in resulting from the row interchanges.
!> 

Definition at line 161 of file dgbsv.f.

162*
163* -- LAPACK driver routine --
164* -- LAPACK is a software package provided by Univ. of Tennessee, --
165* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166*
167* .. Scalar Arguments ..
168 INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
169* ..
170* .. Array Arguments ..
171 INTEGER IPIV( * )
172 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
173* ..
174*
175* =====================================================================
176*
177* .. External Subroutines ..
178 EXTERNAL dgbtrf, dgbtrs, xerbla
179* ..
180* .. Intrinsic Functions ..
181 INTRINSIC max
182* ..
183* .. Executable Statements ..
184*
185* Test the input parameters.
186*
187 info = 0
188 IF( n.LT.0 ) THEN
189 info = -1
190 ELSE IF( kl.LT.0 ) THEN
191 info = -2
192 ELSE IF( ku.LT.0 ) THEN
193 info = -3
194 ELSE IF( nrhs.LT.0 ) THEN
195 info = -4
196 ELSE IF( ldab.LT.2*kl+ku+1 ) THEN
197 info = -6
198 ELSE IF( ldb.LT.max( n, 1 ) ) THEN
199 info = -9
200 END IF
201 IF( info.NE.0 ) THEN
202 CALL xerbla( 'DGBSV ', -info )
203 RETURN
204 END IF
205*
206* Compute the LU factorization of the band matrix A.
207*
208 CALL dgbtrf( n, n, kl, ku, ab, ldab, ipiv, info )
209 IF( info.EQ.0 ) THEN
210*
211* Solve the system A*X = B, overwriting B with X.
212*
213 CALL dgbtrs( 'No transpose', n, kl, ku, nrhs, ab, ldab, ipiv,
214 $ b, ldb, info )
215 END IF
216 RETURN
217*
218* End of DGBSV
219*
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
Definition dgbtrs.f:138
subroutine dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
DGBTRF
Definition dgbtrf.f:144
#define max(a, b)
Definition macros.h:21

◆ dgbsvx()

subroutine dgbsvx ( character fact,
character trans,
integer n,
integer kl,
integer ku,
integer nrhs,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( ldafb, * ) afb,
integer ldafb,
integer, dimension( * ) ipiv,
character equed,
double precision, dimension( * ) r,
double precision, dimension( * ) c,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldx, * ) x,
integer ldx,
double precision rcond,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Download DGBSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGBSVX uses the LU factorization to compute the solution to a real
!> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
!> where A is a band matrix of order N with KL subdiagonals and KU
!> superdiagonals, and X and B are N-by-NRHS matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed by this subroutine:
!>
!> 1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
!>    matrix A (after equilibration if FACT = 'E') as
!>       A = L * U,
!>    where L is a product of permutation and unit lower triangular
!>    matrices with KL subdiagonals, and U is upper triangular with
!>    KL+KU superdiagonals.
!>
!> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
!>    returns with INFO = i. Otherwise, the factored form of A is used
!>    to estimate the condition number of the matrix A.  If the
!>    reciprocal of the condition number is less than machine precision,
!>    INFO = N+1 is returned as a warning, but the routine still goes on
!>    to solve for X and compute error bounds as described below.
!>
!> 4. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 5. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!>
!> 6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of the matrix A is
!>          supplied on entry, and if not, whether the matrix A should be
!>          equilibrated before it is factored.
!>          = 'F':  On entry, AFB and IPIV contain the factored form of
!>                  A.  If EQUED is not 'N', the matrix A has been
!>                  equilibrated with scaling factors given by R and C.
!>                  AB, AFB, and IPIV are not modified.
!>          = 'N':  The matrix A will be copied to AFB and factored.
!>          = 'E':  The matrix A will be equilibrated if necessary, then
!>                  copied to AFB and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Transpose)
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
!>
!>          If FACT = 'F' and EQUED is not 'N', then A must have been
!>          equilibrated by the scaling factors in R and/or C.  AB is not
!>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
!>          EQUED = 'N' on exit.
!>
!>          On exit, if EQUED .ne. 'N', A is scaled as follows:
!>          EQUED = 'R':  A := diag(R) * A
!>          EQUED = 'C':  A := A * diag(C)
!>          EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[in,out]AFB
!>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
!>          If FACT = 'F', then AFB is an input argument and on entry
!>          contains details of the LU factorization of the band matrix
!>          A, as computed by DGBTRF.  U is stored as an upper triangular
!>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
!>          and the multipliers used during the factorization are stored
!>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
!>          the factored form of the equilibrated matrix A.
!>
!>          If FACT = 'N', then AFB is an output argument and on exit
!>          returns details of the LU factorization of A.
!>
!>          If FACT = 'E', then AFB is an output argument and on exit
!>          returns details of the LU factorization of the equilibrated
!>          matrix A (see the description of AB for the form of the
!>          equilibrated matrix).
!> 
[in]LDAFB
!>          LDAFB is INTEGER
!>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          If FACT = 'F', then IPIV is an input argument and on entry
!>          contains the pivot indices from the factorization A = L*U
!>          as computed by DGBTRF; row i of the matrix was interchanged
!>          with row IPIV(i).
!>
!>          If FACT = 'N', then IPIV is an output argument and on exit
!>          contains the pivot indices from the factorization A = L*U
!>          of the original matrix A.
!>
!>          If FACT = 'E', then IPIV is an output argument and on exit
!>          contains the pivot indices from the factorization A = L*U
!>          of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies the form of equilibration that was done.
!>          = 'N':  No equilibration (always true if FACT = 'N').
!>          = 'R':  Row equilibration, i.e., A has been premultiplied by
!>                  diag(R).
!>          = 'C':  Column equilibration, i.e., A has been postmultiplied
!>                  by diag(C).
!>          = 'B':  Both row and column equilibration, i.e., A has been
!>                  replaced by diag(R) * A * diag(C).
!>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>          output argument.
!> 
[in,out]R
!>          R is DOUBLE PRECISION array, dimension (N)
!>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>          is not accessed.  R is an input argument if FACT = 'F';
!>          otherwise, R is an output argument.  If FACT = 'F' and
!>          EQUED = 'R' or 'B', each element of R must be positive.
!> 
[in,out]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>          is not accessed.  C is an input argument if FACT = 'F';
!>          otherwise, C is an output argument.  If FACT = 'F' and
!>          EQUED = 'C' or 'B', each element of C must be positive.
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit,
!>          if EQUED = 'N', B is not modified;
!>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>          diag(R)*B;
!>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>          overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
!>          to the original system of equations.  Note that A and B are
!>          modified on exit if EQUED .ne. 'N', and the solution to the
!>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
!>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
!>          and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>          The estimate of the reciprocal condition number of the matrix
!>          A after equilibration (if done).  If RCOND is less than the
!>          machine precision (in particular, if RCOND = 0), the matrix
!>          is singular to working precision.  This condition is
!>          indicated by a return code of INFO > 0.
!> 
[out]FERR
!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (3*N)
!>          On exit, WORK(1) contains the reciprocal pivot growth
!>          factor norm(A)/norm(U). The  norm is
!>          used. If WORK(1) is much less than 1, then the stability
!>          of the LU factorization of the (equilibrated) matrix A
!>          could be poor. This also means that the solution X, condition
!>          estimator RCOND, and forward error bound FERR could be
!>          unreliable. If factorization fails with 0<INFO<=N, then
!>          WORK(1) contains the reciprocal pivot growth factor for the
!>          leading INFO columns of A.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  U(i,i) is exactly zero.  The factorization
!>                       has been completed, but the factor U is exactly
!>                       singular, so the solution and error bounds
!>                       could not be computed. RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 366 of file dgbsvx.f.

369*
370* -- LAPACK driver routine --
371* -- LAPACK is a software package provided by Univ. of Tennessee, --
372* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
373*
374* .. Scalar Arguments ..
375 CHARACTER EQUED, FACT, TRANS
376 INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
377 DOUBLE PRECISION RCOND
378* ..
379* .. Array Arguments ..
380 INTEGER IPIV( * ), IWORK( * )
381 DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
382 $ BERR( * ), C( * ), FERR( * ), R( * ),
383 $ WORK( * ), X( LDX, * )
384* ..
385*
386* =====================================================================
387*
388* .. Parameters ..
389 DOUBLE PRECISION ZERO, ONE
390 parameter( zero = 0.0d+0, one = 1.0d+0 )
391* ..
392* .. Local Scalars ..
393 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
394 CHARACTER NORM
395 INTEGER I, INFEQU, J, J1, J2
396 DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
397 $ ROWCND, RPVGRW, SMLNUM
398* ..
399* .. External Functions ..
400 LOGICAL LSAME
401 DOUBLE PRECISION DLAMCH, DLANGB, DLANTB
402 EXTERNAL lsame, dlamch, dlangb, dlantb
403* ..
404* .. External Subroutines ..
405 EXTERNAL dcopy, dgbcon, dgbequ, dgbrfs, dgbtrf, dgbtrs,
407* ..
408* .. Intrinsic Functions ..
409 INTRINSIC abs, max, min
410* ..
411* .. Executable Statements ..
412*
413 info = 0
414 nofact = lsame( fact, 'N' )
415 equil = lsame( fact, 'E' )
416 notran = lsame( trans, 'N' )
417 IF( nofact .OR. equil ) THEN
418 equed = 'N'
419 rowequ = .false.
420 colequ = .false.
421 ELSE
422 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
423 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
424 smlnum = dlamch( 'Safe minimum' )
425 bignum = one / smlnum
426 END IF
427*
428* Test the input parameters.
429*
430 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
431 $ THEN
432 info = -1
433 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
434 $ lsame( trans, 'C' ) ) THEN
435 info = -2
436 ELSE IF( n.LT.0 ) THEN
437 info = -3
438 ELSE IF( kl.LT.0 ) THEN
439 info = -4
440 ELSE IF( ku.LT.0 ) THEN
441 info = -5
442 ELSE IF( nrhs.LT.0 ) THEN
443 info = -6
444 ELSE IF( ldab.LT.kl+ku+1 ) THEN
445 info = -8
446 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
447 info = -10
448 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
449 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
450 info = -12
451 ELSE
452 IF( rowequ ) THEN
453 rcmin = bignum
454 rcmax = zero
455 DO 10 j = 1, n
456 rcmin = min( rcmin, r( j ) )
457 rcmax = max( rcmax, r( j ) )
458 10 CONTINUE
459 IF( rcmin.LE.zero ) THEN
460 info = -13
461 ELSE IF( n.GT.0 ) THEN
462 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
463 ELSE
464 rowcnd = one
465 END IF
466 END IF
467 IF( colequ .AND. info.EQ.0 ) THEN
468 rcmin = bignum
469 rcmax = zero
470 DO 20 j = 1, n
471 rcmin = min( rcmin, c( j ) )
472 rcmax = max( rcmax, c( j ) )
473 20 CONTINUE
474 IF( rcmin.LE.zero ) THEN
475 info = -14
476 ELSE IF( n.GT.0 ) THEN
477 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
478 ELSE
479 colcnd = one
480 END IF
481 END IF
482 IF( info.EQ.0 ) THEN
483 IF( ldb.LT.max( 1, n ) ) THEN
484 info = -16
485 ELSE IF( ldx.LT.max( 1, n ) ) THEN
486 info = -18
487 END IF
488 END IF
489 END IF
490*
491 IF( info.NE.0 ) THEN
492 CALL xerbla( 'DGBSVX', -info )
493 RETURN
494 END IF
495*
496 IF( equil ) THEN
497*
498* Compute row and column scalings to equilibrate the matrix A.
499*
500 CALL dgbequ( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
501 $ amax, infequ )
502 IF( infequ.EQ.0 ) THEN
503*
504* Equilibrate the matrix.
505*
506 CALL dlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
507 $ amax, equed )
508 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
509 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
510 END IF
511 END IF
512*
513* Scale the right hand side.
514*
515 IF( notran ) THEN
516 IF( rowequ ) THEN
517 DO 40 j = 1, nrhs
518 DO 30 i = 1, n
519 b( i, j ) = r( i )*b( i, j )
520 30 CONTINUE
521 40 CONTINUE
522 END IF
523 ELSE IF( colequ ) THEN
524 DO 60 j = 1, nrhs
525 DO 50 i = 1, n
526 b( i, j ) = c( i )*b( i, j )
527 50 CONTINUE
528 60 CONTINUE
529 END IF
530*
531 IF( nofact .OR. equil ) THEN
532*
533* Compute the LU factorization of the band matrix A.
534*
535 DO 70 j = 1, n
536 j1 = max( j-ku, 1 )
537 j2 = min( j+kl, n )
538 CALL dcopy( j2-j1+1, ab( ku+1-j+j1, j ), 1,
539 $ afb( kl+ku+1-j+j1, j ), 1 )
540 70 CONTINUE
541*
542 CALL dgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
543*
544* Return if INFO is non-zero.
545*
546 IF( info.GT.0 ) THEN
547*
548* Compute the reciprocal pivot growth factor of the
549* leading rank-deficient INFO columns of A.
550*
551 anorm = zero
552 DO 90 j = 1, info
553 DO 80 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
554 anorm = max( anorm, abs( ab( i, j ) ) )
555 80 CONTINUE
556 90 CONTINUE
557 rpvgrw = dlantb( 'M', 'U', 'N', info, min( info-1, kl+ku ),
558 $ afb( max( 1, kl+ku+2-info ), 1 ), ldafb,
559 $ work )
560 IF( rpvgrw.EQ.zero ) THEN
561 rpvgrw = one
562 ELSE
563 rpvgrw = anorm / rpvgrw
564 END IF
565 work( 1 ) = rpvgrw
566 rcond = zero
567 RETURN
568 END IF
569 END IF
570*
571* Compute the norm of the matrix A and the
572* reciprocal pivot growth factor RPVGRW.
573*
574 IF( notran ) THEN
575 norm = '1'
576 ELSE
577 norm = 'I'
578 END IF
579 anorm = dlangb( norm, n, kl, ku, ab, ldab, work )
580 rpvgrw = dlantb( 'M', 'U', 'N', n, kl+ku, afb, ldafb, work )
581 IF( rpvgrw.EQ.zero ) THEN
582 rpvgrw = one
583 ELSE
584 rpvgrw = dlangb( 'M', n, kl, ku, ab, ldab, work ) / rpvgrw
585 END IF
586*
587* Compute the reciprocal of the condition number of A.
588*
589 CALL dgbcon( norm, n, kl, ku, afb, ldafb, ipiv, anorm, rcond,
590 $ work, iwork, info )
591*
592* Compute the solution matrix X.
593*
594 CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
595 CALL dgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
596 $ info )
597*
598* Use iterative refinement to improve the computed solution and
599* compute error bounds and backward error estimates for it.
600*
601 CALL dgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
602 $ b, ldb, x, ldx, ferr, berr, work, iwork, info )
603*
604* Transform the solution matrix X to a solution of the original
605* system.
606*
607 IF( notran ) THEN
608 IF( colequ ) THEN
609 DO 110 j = 1, nrhs
610 DO 100 i = 1, n
611 x( i, j ) = c( i )*x( i, j )
612 100 CONTINUE
613 110 CONTINUE
614 DO 120 j = 1, nrhs
615 ferr( j ) = ferr( j ) / colcnd
616 120 CONTINUE
617 END IF
618 ELSE IF( rowequ ) THEN
619 DO 140 j = 1, nrhs
620 DO 130 i = 1, n
621 x( i, j ) = r( i )*x( i, j )
622 130 CONTINUE
623 140 CONTINUE
624 DO 150 j = 1, nrhs
625 ferr( j ) = ferr( j ) / rowcnd
626 150 CONTINUE
627 END IF
628*
629* Set INFO = N+1 if the matrix is singular to working precision.
630*
631 IF( rcond.LT.dlamch( 'Epsilon' ) )
632 $ info = n + 1
633*
634 work( 1 ) = rpvgrw
635 RETURN
636*
637* End of DGBSVX
638*
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
DLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
Definition dlaqgb.f:159
double precision function dlangb(norm, n, kl, ku, ab, ldab, work)
DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlangb.f:124
subroutine dgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
DGBEQU
Definition dgbequ.f:153
subroutine dgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGBRFS
Definition dgbrfs.f:205
subroutine dgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
DGBCON
Definition dgbcon.f:146
double precision function dlantb(norm, uplo, diag, n, k, ab, ldab, work)
DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlantb.f:140
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
#define min(a, b)
Definition macros.h:20

◆ dgbsvxx()

subroutine dgbsvxx ( character fact,
character trans,
integer n,
integer kl,
integer ku,
integer nrhs,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( ldafb, * ) afb,
integer ldafb,
integer, dimension( * ) ipiv,
character equed,
double precision, dimension( * ) r,
double precision, dimension( * ) c,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldx , * ) x,
integer ldx,
double precision rcond,
double precision rpvgrw,
double precision, dimension( * ) berr,
integer n_err_bnds,
double precision, dimension( nrhs, * ) err_bnds_norm,
double precision, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
double precision, dimension( * ) params,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Download DGBSVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    DGBSVXX uses the LU factorization to compute the solution to a
!>    double precision system of linear equations  A * X = B,  where A is an
!>    N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. DGBSVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    DGBSVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    DGBSVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what DGBSVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
!>    the system:
!>
!>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>      A = P * L * U,
!>
!>    where P is a permutation matrix, L is a unit lower triangular
!>    matrix, and U is upper triangular.
!>
!>    3. If some U(i,i)=0, so that U is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND). If the reciprocal of the condition number is less
!>    than machine precision, the routine still goes on to solve for X
!>    and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by R and C.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>     Specifies the form of the system of equations:
!>       = 'N':  A * X = B     (No transpose)
!>       = 'T':  A**T * X = B  (Transpose)
!>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>     The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>     The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>     The j-th column of A is stored in the j-th column of the
!>     array AB as follows:
!>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
!>
!>     If FACT = 'F' and EQUED is not 'N', then AB must have been
!>     equilibrated by the scaling factors in R and/or C.  AB is not
!>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
!>     EQUED = 'N' on exit.
!>
!>     On exit, if EQUED .ne. 'N', A is scaled as follows:
!>     EQUED = 'R':  A := diag(R) * A
!>     EQUED = 'C':  A := A * diag(C)
!>     EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[in,out]AFB
!>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
!>     If FACT = 'F', then AFB is an input argument and on entry
!>     contains details of the LU factorization of the band matrix
!>     A, as computed by DGBTRF.  U is stored as an upper triangular
!>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
!>     and the multipliers used during the factorization are stored
!>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
!>     the factored form of the equilibrated matrix A.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the equilibrated matrix A (see the description of A for
!>     the form of the equilibrated matrix).
!> 
[in]LDAFB
!>          LDAFB is INTEGER
!>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains the pivot indices from the factorization A = P*L*U
!>     as computed by DGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'R':  Row equilibration, i.e., A has been premultiplied by
!>               diag(R).
!>       = 'C':  Column equilibration, i.e., A has been postmultiplied
!>               by diag(C).
!>       = 'B':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(R) * A * diag(C).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]R
!>          R is DOUBLE PRECISION array, dimension (N)
!>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>     is not accessed.  R is an input argument if FACT = 'F';
!>     otherwise, R is an output argument.  If FACT = 'F' and
!>     EQUED = 'R' or 'B', each element of R must be positive.
!>     If R is output, each element of R is a power of the radix.
!>     If R is input, each element of R should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>     is not accessed.  C is an input argument if FACT = 'F';
!>     otherwise, C is an output argument.  If FACT = 'F' and
!>     EQUED = 'C' or 'B', each element of C must be positive.
!>     If C is output, each element of C is a power of the radix.
!>     If C is input, each element of C should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>        diag(R)*B;
!>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>        overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit
!>     if EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
!>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is DOUBLE PRECISION
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.  In DGESVX, this quantity is
!>     returned in WORK(1).
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0D+0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the extra-precise refinement algorithm.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 555 of file dgbsvxx.f.

560*
561* -- LAPACK driver routine --
562* -- LAPACK is a software package provided by Univ. of Tennessee, --
563* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
564*
565* .. Scalar Arguments ..
566 CHARACTER EQUED, FACT, TRANS
567 INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
568 $ N_ERR_BNDS, KL, KU
569 DOUBLE PRECISION RCOND, RPVGRW
570* ..
571* .. Array Arguments ..
572 INTEGER IPIV( * ), IWORK( * )
573 DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
574 $ X( LDX , * ),WORK( * )
575 DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
576 $ ERR_BNDS_NORM( NRHS, * ),
577 $ ERR_BNDS_COMP( NRHS, * )
578* ..
579*
580* ==================================================================
581*
582* .. Parameters ..
583 DOUBLE PRECISION ZERO, ONE
584 parameter( zero = 0.0d+0, one = 1.0d+0 )
585 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
586 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
587 INTEGER CMP_ERR_I, PIV_GROWTH_I
588 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
589 $ berr_i = 3 )
590 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
591 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
592 $ piv_growth_i = 9 )
593* ..
594* .. Local Scalars ..
595 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
596 INTEGER INFEQU, I, J
597 DOUBLE PRECISION AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
598 $ ROWCND, SMLNUM
599* ..
600* .. External Functions ..
601 EXTERNAL lsame, dlamch, dla_gbrpvgrw
602 LOGICAL LSAME
603 DOUBLE PRECISION DLAMCH, DLA_GBRPVGRW
604* ..
605* .. External Subroutines ..
606 EXTERNAL dgbequb, dgbtrf, dgbtrs, dlacpy, dlaqgb,
608* ..
609* .. Intrinsic Functions ..
610 INTRINSIC max, min
611* ..
612* .. Executable Statements ..
613*
614 info = 0
615 nofact = lsame( fact, 'N' )
616 equil = lsame( fact, 'E' )
617 notran = lsame( trans, 'N' )
618 smlnum = dlamch( 'Safe minimum' )
619 bignum = one / smlnum
620 IF( nofact .OR. equil ) THEN
621 equed = 'N'
622 rowequ = .false.
623 colequ = .false.
624 ELSE
625 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
626 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
627 END IF
628*
629* Default is failure. If an input parameter is wrong or
630* factorization fails, make everything look horrible. Only the
631* pivot growth is set here, the rest is initialized in DGBRFSX.
632*
633 rpvgrw = zero
634*
635* Test the input parameters. PARAMS is not tested until DGBRFSX.
636*
637 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
638 $ lsame( fact, 'F' ) ) THEN
639 info = -1
640 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
641 $ lsame( trans, 'C' ) ) THEN
642 info = -2
643 ELSE IF( n.LT.0 ) THEN
644 info = -3
645 ELSE IF( kl.LT.0 ) THEN
646 info = -4
647 ELSE IF( ku.LT.0 ) THEN
648 info = -5
649 ELSE IF( nrhs.LT.0 ) THEN
650 info = -6
651 ELSE IF( ldab.LT.kl+ku+1 ) THEN
652 info = -8
653 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
654 info = -10
655 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
656 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
657 info = -12
658 ELSE
659 IF( rowequ ) THEN
660 rcmin = bignum
661 rcmax = zero
662 DO 10 j = 1, n
663 rcmin = min( rcmin, r( j ) )
664 rcmax = max( rcmax, r( j ) )
665 10 CONTINUE
666 IF( rcmin.LE.zero ) THEN
667 info = -13
668 ELSE IF( n.GT.0 ) THEN
669 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
670 ELSE
671 rowcnd = one
672 END IF
673 END IF
674 IF( colequ .AND. info.EQ.0 ) THEN
675 rcmin = bignum
676 rcmax = zero
677 DO 20 j = 1, n
678 rcmin = min( rcmin, c( j ) )
679 rcmax = max( rcmax, c( j ) )
680 20 CONTINUE
681 IF( rcmin.LE.zero ) THEN
682 info = -14
683 ELSE IF( n.GT.0 ) THEN
684 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
685 ELSE
686 colcnd = one
687 END IF
688 END IF
689 IF( info.EQ.0 ) THEN
690 IF( ldb.LT.max( 1, n ) ) THEN
691 info = -15
692 ELSE IF( ldx.LT.max( 1, n ) ) THEN
693 info = -16
694 END IF
695 END IF
696 END IF
697*
698 IF( info.NE.0 ) THEN
699 CALL xerbla( 'DGBSVXX', -info )
700 RETURN
701 END IF
702*
703 IF( equil ) THEN
704*
705* Compute row and column scalings to equilibrate the matrix A.
706*
707 CALL dgbequb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
708 $ amax, infequ )
709 IF( infequ.EQ.0 ) THEN
710*
711* Equilibrate the matrix.
712*
713 CALL dlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
714 $ amax, equed )
715 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
716 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
717 END IF
718*
719* If the scaling factors are not applied, set them to 1.0.
720*
721 IF ( .NOT.rowequ ) THEN
722 DO j = 1, n
723 r( j ) = 1.0d+0
724 END DO
725 END IF
726 IF ( .NOT.colequ ) THEN
727 DO j = 1, n
728 c( j ) = 1.0d+0
729 END DO
730 END IF
731 END IF
732*
733* Scale the right hand side.
734*
735 IF( notran ) THEN
736 IF( rowequ ) CALL dlascl2(n, nrhs, r, b, ldb)
737 ELSE
738 IF( colequ ) CALL dlascl2(n, nrhs, c, b, ldb)
739 END IF
740*
741 IF( nofact .OR. equil ) THEN
742*
743* Compute the LU factorization of A.
744*
745 DO 40, j = 1, n
746 DO 30, i = kl+1, 2*kl+ku+1
747 afb( i, j ) = ab( i-kl, j )
748 30 CONTINUE
749 40 CONTINUE
750 CALL dgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
751*
752* Return if INFO is non-zero.
753*
754 IF( info.GT.0 ) THEN
755*
756* Pivot in column INFO is exactly 0
757* Compute the reciprocal pivot growth factor of the
758* leading rank-deficient INFO columns of A.
759*
760 rpvgrw = dla_gbrpvgrw( n, kl, ku, info, ab, ldab, afb,
761 $ ldafb )
762 RETURN
763 END IF
764 END IF
765*
766* Compute the reciprocal pivot growth factor RPVGRW.
767*
768 rpvgrw = dla_gbrpvgrw( n, kl, ku, n, ab, ldab, afb, ldafb )
769*
770* Compute the solution matrix X.
771*
772 CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
773 CALL dgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
774 $ info )
775*
776* Use iterative refinement to improve the computed solution and
777* compute error bounds and backward error estimates for it.
778*
779 CALL dgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
780 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
781 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
782 $ work, iwork, info )
783*
784* Scale solutions.
785*
786 IF ( colequ .AND. notran ) THEN
787 CALL dlascl2 ( n, nrhs, c, x, ldx )
788 ELSE IF ( rowequ .AND. .NOT.notran ) THEN
789 CALL dlascl2 ( n, nrhs, r, x, ldx )
790 END IF
791*
792 RETURN
793*
794* End of DGBSVXX
795*
subroutine dgbrfsx(trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
DGBRFSX
Definition dgbrfsx.f:440
subroutine dgbequb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
DGBEQUB
Definition dgbequb.f:160
double precision function dla_gbrpvgrw(n, kl, ku, ncols, ab, ldab, afb, ldafb)
DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
subroutine dlascl2(m, n, d, x, ldx)
DLASCL2 performs diagonal scaling on a vector.
Definition dlascl2.f:90