OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches

Functions

subroutine ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
  SSYSV computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysv_aa (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
  SSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysv_aa_2stage (uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, work, lwork, info)
  SSYSV_AA_2STAGE computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysv_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
  SSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
  SSYSVX computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysvxx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
 SSYSVXX

Detailed Description

This is the group of real solve driver functions for SY matrices

Function Documentation

◆ ssysv()

subroutine ssysv ( character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) work,
integer lwork,
integer info )

SSYSV computes the solution to system of linear equations A * X = B for SY matrices

Download SSYSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYSV computes the solution to a real system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The diagonal pivoting method is used to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is symmetric and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
!> used to solve the system of equations A * X = B.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**T or A = L*D*L**T as computed by
!>          SSYTRF.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D, as
!>          determined by SSYTRF.  If IPIV(k) > 0, then rows and columns
!>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
!>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
!>          then rows and columns k-1 and -IPIV(k) were interchanged and
!>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
!>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
!>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
!>          diagonal block.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          SSYTRF.
!>          for LWORK < N, TRS will be done with Level BLAS 2
!>          for LWORK >= N, TRS will be done with Level BLAS 3
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 169 of file ssysv.f.

171*
172* -- LAPACK driver routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER UPLO
178 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
179* ..
180* .. Array Arguments ..
181 INTEGER IPIV( * )
182 REAL A( LDA, * ), B( LDB, * ), WORK( * )
183* ..
184*
185* =====================================================================
186*
187* .. Local Scalars ..
188 LOGICAL LQUERY
189 INTEGER LWKOPT
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 EXTERNAL lsame
194* ..
195* .. External Subroutines ..
196 EXTERNAL xerbla, ssytrf, ssytrs, ssytrs2
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC max
200* ..
201* .. Executable Statements ..
202*
203* Test the input parameters.
204*
205 info = 0
206 lquery = ( lwork.EQ.-1 )
207 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
208 info = -1
209 ELSE IF( n.LT.0 ) THEN
210 info = -2
211 ELSE IF( nrhs.LT.0 ) THEN
212 info = -3
213 ELSE IF( lda.LT.max( 1, n ) ) THEN
214 info = -5
215 ELSE IF( ldb.LT.max( 1, n ) ) THEN
216 info = -8
217 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
218 info = -10
219 END IF
220*
221 IF( info.EQ.0 ) THEN
222 IF( n.EQ.0 ) THEN
223 lwkopt = 1
224 ELSE
225 CALL ssytrf( uplo, n, a, lda, ipiv, work, -1, info )
226 lwkopt = work(1)
227 END IF
228 work( 1 ) = lwkopt
229 END IF
230*
231 IF( info.NE.0 ) THEN
232 CALL xerbla( 'SSYSV ', -info )
233 RETURN
234 ELSE IF( lquery ) THEN
235 RETURN
236 END IF
237*
238* Compute the factorization A = U*D*U**T or A = L*D*L**T.
239*
240 CALL ssytrf( uplo, n, a, lda, ipiv, work, lwork, info )
241 IF( info.EQ.0 ) THEN
242*
243* Solve the system A*X = B, overwriting B with X.
244*
245 IF ( lwork.LT.n ) THEN
246*
247* Solve with TRS ( Use Level BLAS 2)
248*
249 CALL ssytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
250*
251 ELSE
252*
253* Solve with TRS2 ( Use Level BLAS 3)
254*
255 CALL ssytrs2( uplo,n,nrhs,a,lda,ipiv,b,ldb,work,info )
256*
257 END IF
258*
259 END IF
260*
261 work( 1 ) = lwkopt
262*
263 RETURN
264*
265* End of SSYSV
266*
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine ssytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
SSYTRS2
Definition ssytrs2.f:132
subroutine ssytrf(uplo, n, a, lda, ipiv, work, lwork, info)
SSYTRF
Definition ssytrf.f:182
subroutine ssytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS
Definition ssytrs.f:120
#define max(a, b)
Definition macros.h:21

◆ ssysv_aa()

subroutine ssysv_aa ( character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) work,
integer lwork,
integer info )

SSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices

Download SSYSV_AA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYSV computes the solution to a real system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> Aasen's algorithm is used to factor A as
!>    A = U**T * T * U,  if UPLO = 'U', or
!>    A = L * T * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and T is symmetric tridiagonal. The factored
!> form of A is then used to solve the system of equations A * X = B.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the tridiagonal matrix T and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U**T*T*U or A = L*T*L**T as computed by
!>          SSYTRF.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          On exit, it contains the details of the interchanges, i.e.,
!>          the row and column k of A were interchanged with the
!>          row and column IPIV(k).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= MAX(1,2*N,3*N-2), and for
!>          the best performance, LWORK >= MAX(1,N*NB), where NB is
!>          the optimal blocksize for SSYTRF_AA.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 160 of file ssysv_aa.f.

162*
163* -- LAPACK driver routine --
164* -- LAPACK is a software package provided by Univ. of Tennessee, --
165* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166*
167* .. Scalar Arguments ..
168 CHARACTER UPLO
169 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
170* ..
171* .. Array Arguments ..
172 INTEGER IPIV( * )
173 REAL A( LDA, * ), B( LDB, * ), WORK( * )
174* ..
175*
176* =====================================================================
177*
178* .. Local Scalars ..
179 LOGICAL LQUERY
180 INTEGER LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS
181* ..
182* .. External Functions ..
183 LOGICAL LSAME
184 EXTERNAL lsame
185* ..
186* .. External Subroutines ..
187 EXTERNAL xerbla, ssytrs_aa, ssytrf_aa
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC max
191* ..
192* .. Executable Statements ..
193*
194* Test the input parameters.
195*
196 info = 0
197 lquery = ( lwork.EQ.-1 )
198 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
199 info = -1
200 ELSE IF( n.LT.0 ) THEN
201 info = -2
202 ELSE IF( nrhs.LT.0 ) THEN
203 info = -3
204 ELSE IF( lda.LT.max( 1, n ) ) THEN
205 info = -5
206 ELSE IF( ldb.LT.max( 1, n ) ) THEN
207 info = -8
208 ELSE IF( lwork.LT.max(2*n, 3*n-2) .AND. .NOT.lquery ) THEN
209 info = -10
210 END IF
211*
212 IF( info.EQ.0 ) THEN
213 CALL ssytrf_aa( uplo, n, a, lda, ipiv, work, -1, info )
214 lwkopt_sytrf = int( work(1) )
215 CALL ssytrs_aa( uplo, n, nrhs, a, lda, ipiv, b, ldb, work,
216 $ -1, info )
217 lwkopt_sytrs = int( work(1) )
218 lwkopt = max( lwkopt_sytrf, lwkopt_sytrs )
219 work( 1 ) = lwkopt
220 END IF
221*
222 IF( info.NE.0 ) THEN
223 CALL xerbla( 'SSYSV_AA', -info )
224 RETURN
225 ELSE IF( lquery ) THEN
226 RETURN
227 END IF
228*
229* Compute the factorization A = U**T*T*U or A = L*T*L**T.
230*
231 CALL ssytrf_aa( uplo, n, a, lda, ipiv, work, lwork, info )
232 IF( info.EQ.0 ) THEN
233*
234* Solve the system A*X = B, overwriting B with X.
235*
236 CALL ssytrs_aa( uplo, n, nrhs, a, lda, ipiv, b, ldb, work,
237 $ lwork, info )
238*
239 END IF
240*
241 work( 1 ) = lwkopt
242*
243 RETURN
244*
245* End of SSYSV_AA
246*
subroutine ssytrs_aa(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
SSYTRS_AA
Definition ssytrs_aa.f:131
subroutine ssytrf_aa(uplo, n, a, lda, ipiv, work, lwork, info)
SSYTRF_AA
Definition ssytrf_aa.f:132

◆ ssysv_aa_2stage()

subroutine ssysv_aa_2stage ( character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tb,
integer ltb,
integer, dimension( * ) ipiv,
integer, dimension( * ) ipiv2,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) work,
integer lwork,
integer info )

SSYSV_AA_2STAGE computes the solution to system of linear equations A * X = B for SY matrices

Download SSYSV_AA_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYSV_AA_2STAGE computes the solution to a real system of
!> linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> Aasen's 2-stage algorithm is used to factor A as
!>    A = U**T * T * U,  if UPLO = 'U', or
!>    A = L * T * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and T is symmetric and band. The matrix T is
!> then LU-factored with partial pivoting. The factored form of A
!> is then used to solve the system of equations A * X = B.
!>
!> This is the blocked version of the algorithm, calling Level 3 BLAS.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, L is stored below (or above) the subdiaonal blocks,
!>          when UPLO  is 'L' (or 'U').
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TB
!>          TB is REAL array, dimension (LTB)
!>          On exit, details of the LU factorization of the band matrix.
!> 
[in]LTB
!>          LTB is INTEGER
!>          The size of the array TB. LTB >= 4*N, internally
!>          used to select NB such that LTB >= (3*NB+1)*N.
!>
!>          If LTB = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal size of LTB, 
!>          returns this value as the first entry of TB, and
!>          no error message related to LTB is issued by XERBLA.
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          On exit, it contains the details of the interchanges, i.e.,
!>          the row and column k of A were interchanged with the
!>          row and column IPIV(k).
!> 
[out]IPIV2
!>          IPIV2 is INTEGER array, dimension (N)
!>          On exit, it contains the details of the interchanges, i.e.,
!>          the row and column k of T were interchanged with the
!>          row and column IPIV(k).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL workspace of size LWORK
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The size of WORK. LWORK >= N, internally used to select NB
!>          such that LWORK >= N*NB.
!>
!>          If LWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal size of the WORK array,
!>          returns this value as the first entry of the WORK array, and
!>          no error message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, band LU factorization failed on i-th column
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 184 of file ssysv_aa_2stage.f.

187*
188* -- LAPACK driver routine --
189* -- LAPACK is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192 IMPLICIT NONE
193*
194* .. Scalar Arguments ..
195 CHARACTER UPLO
196 INTEGER N, NRHS, LDA, LDB, LTB, LWORK, INFO
197* ..
198* .. Array Arguments ..
199 INTEGER IPIV( * ), IPIV2( * )
200 REAL A( LDA, * ), B( LDB, * ), TB( * ), WORK( * )
201* ..
202*
203* =====================================================================
204* ..
205* .. Local Scalars ..
206 LOGICAL UPPER, TQUERY, WQUERY
207 INTEGER LWKOPT
208* ..
209* .. External Functions ..
210 LOGICAL LSAME
211 EXTERNAL lsame
212* ..
213* .. External Subroutines ..
215 $ xerbla
216* ..
217* .. Intrinsic Functions ..
218 INTRINSIC max
219* ..
220* .. Executable Statements ..
221*
222* Test the input parameters.
223*
224 info = 0
225 upper = lsame( uplo, 'U' )
226 wquery = ( lwork.EQ.-1 )
227 tquery = ( ltb.EQ.-1 )
228 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
229 info = -1
230 ELSE IF( n.LT.0 ) THEN
231 info = -2
232 ELSE IF( nrhs.LT.0 ) THEN
233 info = -3
234 ELSE IF( lda.LT.max( 1, n ) ) THEN
235 info = -5
236 ELSE IF( ltb.LT.( 4*n ) .AND. .NOT.tquery ) THEN
237 info = -7
238 ELSE IF( ldb.LT.max( 1, n ) ) THEN
239 info = -11
240 ELSE IF( lwork.LT.n .AND. .NOT.wquery ) THEN
241 info = -13
242 END IF
243*
244 IF( info.EQ.0 ) THEN
245 CALL ssytrf_aa_2stage( uplo, n, a, lda, tb, -1, ipiv,
246 $ ipiv2, work, -1, info )
247 lwkopt = int( work(1) )
248 END IF
249*
250 IF( info.NE.0 ) THEN
251 CALL xerbla( 'SSYSV_AA_2STAGE', -info )
252 RETURN
253 ELSE IF( wquery .OR. tquery ) THEN
254 RETURN
255 END IF
256*
257*
258* Compute the factorization A = U**T*T*U or A = L*T*L**T.
259*
260 CALL ssytrf_aa_2stage( uplo, n, a, lda, tb, ltb, ipiv, ipiv2,
261 $ work, lwork, info )
262 IF( info.EQ.0 ) THEN
263*
264* Solve the system A*X = B, overwriting B with X.
265*
266 CALL ssytrs_aa_2stage( uplo, n, nrhs, a, lda, tb, ltb, ipiv,
267 $ ipiv2, b, ldb, info )
268*
269 END IF
270*
271 work( 1 ) = lwkopt
272*
273 RETURN
274*
275* End of SSYSV_AA_2STAGE
276*
subroutine ssytrf_aa_2stage(uplo, n, a, lda, tb, ltb, ipiv, ipiv2, work, lwork, info)
SSYTRF_AA_2STAGE
subroutine ssytrs_aa_2stage(uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, info)
SSYTRS_AA_2STAGE

◆ ssysv_rook()

subroutine ssysv_rook ( character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) work,
integer lwork,
integer info )

SSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices

Download SSYSV_ROOK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYSV_ROOK computes the solution to a real system of linear
!> equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The diagonal pivoting method is used to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is symmetric and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.
!>
!> SSYTRF_ROOK is called to compute the factorization of a real
!> symmetric matrix A using the bounded Bunch-Kaufman () diagonal
!> pivoting method.
!>
!> The factored form of A is then used to solve the system
!> of equations A * X = B by calling SSYTRS_ROOK.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**T or A = L*D*L**T as computed by
!>          SSYTRF_ROOK.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D,
!>          as determined by SSYTRF_ROOK.
!>
!>          If UPLO = 'U':
!>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
!>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
!>               columns k and -IPIV(k) were interchanged and rows and
!>               columns k-1 and -IPIV(k-1) were inerchaged,
!>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
!>
!>          If UPLO = 'L':
!>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
!>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
!>               columns k and -IPIV(k) were interchanged and rows and
!>               columns k+1 and -IPIV(k+1) were inerchaged,
!>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          SSYTRF_ROOK.
!>
!>          TRS will be done with Level 2 BLAS
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!>
!>   April 2012, Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 202 of file ssysv_rook.f.

204*
205* -- LAPACK driver routine --
206* -- LAPACK is a software package provided by Univ. of Tennessee, --
207* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
208*
209* .. Scalar Arguments ..
210 CHARACTER UPLO
211 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
212* ..
213* .. Array Arguments ..
214 INTEGER IPIV( * )
215 REAL A( LDA, * ), B( LDB, * ), WORK( * )
216* ..
217*
218* =====================================================================
219*
220* .. Local Scalars ..
221 LOGICAL LQUERY
222 INTEGER LWKOPT
223* ..
224* .. External Functions ..
225 LOGICAL LSAME
226 EXTERNAL lsame
227* ..
228* .. External Subroutines ..
230* ..
231* .. Intrinsic Functions ..
232 INTRINSIC max
233* ..
234* .. Executable Statements ..
235*
236* Test the input parameters.
237*
238 info = 0
239 lquery = ( lwork.EQ.-1 )
240 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
241 info = -1
242 ELSE IF( n.LT.0 ) THEN
243 info = -2
244 ELSE IF( nrhs.LT.0 ) THEN
245 info = -3
246 ELSE IF( lda.LT.max( 1, n ) ) THEN
247 info = -5
248 ELSE IF( ldb.LT.max( 1, n ) ) THEN
249 info = -8
250 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
251 info = -10
252 END IF
253*
254 IF( info.EQ.0 ) THEN
255 IF( n.EQ.0 ) THEN
256 lwkopt = 1
257 ELSE
258 CALL ssytrf_rook( uplo, n, a, lda, ipiv, work, -1, info )
259 lwkopt = work(1)
260 END IF
261 work( 1 ) = lwkopt
262 END IF
263*
264 IF( info.NE.0 ) THEN
265 CALL xerbla( 'SSYSV_ROOK ', -info )
266 RETURN
267 ELSE IF( lquery ) THEN
268 RETURN
269 END IF
270*
271* Compute the factorization A = U*D*U**T or A = L*D*L**T.
272*
273 CALL ssytrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
274 IF( info.EQ.0 ) THEN
275*
276* Solve the system A*X = B, overwriting B with X.
277*
278* Solve with TRS_ROOK ( Use Level 2 BLAS)
279*
280 CALL ssytrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
281*
282 END IF
283*
284 work( 1 ) = lwkopt
285*
286 RETURN
287*
288* End of SSYSV_ROOK
289*
subroutine ssytrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
SSYTRF_ROOK
subroutine ssytrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS_ROOK

◆ ssysvx()

subroutine ssysvx ( character fact,
character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer info )

SSYSVX computes the solution to system of linear equations A * X = B for SY matrices

Download SSYSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYSVX uses the diagonal pivoting factorization to compute the
!> solution to a real system of linear equations A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed:
!>
!> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
!>    The form of the factorization is
!>       A = U * D * U**T,  if UPLO = 'U', or
!>       A = L * D * L**T,  if UPLO = 'L',
!>    where U (or L) is a product of permutation and unit upper (lower)
!>    triangular matrices, and D is symmetric and block diagonal with
!>    1-by-1 and 2-by-2 diagonal blocks.
!>
!> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
!>    returns with INFO = i. Otherwise, the factored form of A is used
!>    to estimate the condition number of the matrix A.  If the
!>    reciprocal of the condition number is less than machine precision,
!>    INFO = N+1 is returned as a warning, but the routine still goes on
!>    to solve for X and compute error bounds as described below.
!>
!> 3. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 4. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of A has been
!>          supplied on entry.
!>          = 'F':  On entry, AF and IPIV contain the factored form of
!>                  A.  AF and IPIV will not be modified.
!>          = 'N':  The matrix A will be copied to AF and factored.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is REAL array, dimension (LDAF,N)
!>          If FACT = 'F', then AF is an input argument and on entry
!>          contains the block diagonal matrix D and the multipliers used
!>          to obtain the factor U or L from the factorization
!>          A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
!>
!>          If FACT = 'N', then AF is an output argument and on exit
!>          returns the block diagonal matrix D and the multipliers used
!>          to obtain the factor U or L from the factorization
!>          A = U*D*U**T or A = L*D*L**T.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          If FACT = 'F', then IPIV is an input argument and on entry
!>          contains details of the interchanges and the block structure
!>          of D, as determined by SSYTRF.
!>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
!>          interchanged and D(k,k) is a 1-by-1 diagonal block.
!>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
!>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
!>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
!>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
!>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!>
!>          If FACT = 'N', then IPIV is an output argument and on exit
!>          contains details of the interchanges and the block structure
!>          of D, as determined by SSYTRF.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          The N-by-NRHS right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The estimate of the reciprocal condition number of the matrix
!>          A.  If RCOND is less than the machine precision (in
!>          particular, if RCOND = 0), the matrix is singular to working
!>          precision.  This condition is indicated by a return code of
!>          INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= max(1,3*N), and for best
!>          performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
!>          NB is the optimal blocksize for SSYTRF.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, and i is
!>                <= N:  D(i,i) is exactly zero.  The factorization
!>                       has been completed but the factor D is exactly
!>                       singular, so the solution and error bounds could
!>                       not be computed. RCOND = 0 is returned.
!>                = N+1: D is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 281 of file ssysvx.f.

284*
285* -- LAPACK driver routine --
286* -- LAPACK is a software package provided by Univ. of Tennessee, --
287* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
288*
289* .. Scalar Arguments ..
290 CHARACTER FACT, UPLO
291 INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
292 REAL RCOND
293* ..
294* .. Array Arguments ..
295 INTEGER IPIV( * ), IWORK( * )
296 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
297 $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
298* ..
299*
300* =====================================================================
301*
302* .. Parameters ..
303 REAL ZERO
304 parameter( zero = 0.0e+0 )
305* ..
306* .. Local Scalars ..
307 LOGICAL LQUERY, NOFACT
308 INTEGER LWKOPT, NB
309 REAL ANORM
310* ..
311* .. External Functions ..
312 LOGICAL LSAME
313 INTEGER ILAENV
314 REAL SLAMCH, SLANSY
315 EXTERNAL ilaenv, lsame, slamch, slansy
316* ..
317* .. External Subroutines ..
318 EXTERNAL slacpy, ssycon, ssyrfs, ssytrf, ssytrs, xerbla
319* ..
320* .. Intrinsic Functions ..
321 INTRINSIC max
322* ..
323* .. Executable Statements ..
324*
325* Test the input parameters.
326*
327 info = 0
328 nofact = lsame( fact, 'N' )
329 lquery = ( lwork.EQ.-1 )
330 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
331 info = -1
332 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) )
333 $ THEN
334 info = -2
335 ELSE IF( n.LT.0 ) THEN
336 info = -3
337 ELSE IF( nrhs.LT.0 ) THEN
338 info = -4
339 ELSE IF( lda.LT.max( 1, n ) ) THEN
340 info = -6
341 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
342 info = -8
343 ELSE IF( ldb.LT.max( 1, n ) ) THEN
344 info = -11
345 ELSE IF( ldx.LT.max( 1, n ) ) THEN
346 info = -13
347 ELSE IF( lwork.LT.max( 1, 3*n ) .AND. .NOT.lquery ) THEN
348 info = -18
349 END IF
350*
351 IF( info.EQ.0 ) THEN
352 lwkopt = max( 1, 3*n )
353 IF( nofact ) THEN
354 nb = ilaenv( 1, 'SSYTRF', uplo, n, -1, -1, -1 )
355 lwkopt = max( lwkopt, n*nb )
356 END IF
357 work( 1 ) = lwkopt
358 END IF
359*
360 IF( info.NE.0 ) THEN
361 CALL xerbla( 'SSYSVX', -info )
362 RETURN
363 ELSE IF( lquery ) THEN
364 RETURN
365 END IF
366*
367 IF( nofact ) THEN
368*
369* Compute the factorization A = U*D*U**T or A = L*D*L**T.
370*
371 CALL slacpy( uplo, n, n, a, lda, af, ldaf )
372 CALL ssytrf( uplo, n, af, ldaf, ipiv, work, lwork, info )
373*
374* Return if INFO is non-zero.
375*
376 IF( info.GT.0 )THEN
377 rcond = zero
378 RETURN
379 END IF
380 END IF
381*
382* Compute the norm of the matrix A.
383*
384 anorm = slansy( 'I', uplo, n, a, lda, work )
385*
386* Compute the reciprocal of the condition number of A.
387*
388 CALL ssycon( uplo, n, af, ldaf, ipiv, anorm, rcond, work, iwork,
389 $ info )
390*
391* Compute the solution vectors X.
392*
393 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
394 CALL ssytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
395*
396* Use iterative refinement to improve the computed solutions and
397* compute error bounds and backward error estimates for them.
398*
399 CALL ssyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x,
400 $ ldx, ferr, berr, work, iwork, info )
401*
402* Set INFO = N+1 if the matrix is singular to working precision.
403*
404 IF( rcond.LT.slamch( 'Epsilon' ) )
405 $ info = n + 1
406*
407 work( 1 ) = lwkopt
408*
409 RETURN
410*
411* End of SSYSVX
412*
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
real function slansy(norm, uplo, n, a, lda, work)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slansy.f:122
subroutine ssycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
SSYCON
Definition ssycon.f:130
subroutine ssyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SSYRFS
Definition ssyrfs.f:191
real function slamch(cmach)
SLAMCH
Definition slamch.f:68

◆ ssysvxx()

subroutine ssysvxx ( character fact,
character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
character equed,
real, dimension( * ) s,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real rpvgrw,
real, dimension( * ) berr,
integer n_err_bnds,
real, dimension( nrhs, * ) err_bnds_norm,
real, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
real, dimension( * ) params,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SSYSVXX

Download SSYSVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    SSYSVXX uses the diagonal pivoting factorization to compute the
!>    solution to a real system of linear equations A * X = B, where A
!>    is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. SSYSVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    SSYSVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    SSYSVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what SSYSVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>
!>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>       A = U * D * U**T,  if UPLO = 'U', or
!>       A = L * D * L**T,  if UPLO = 'L',
!>
!>    where U (or L) is a product of permutation and unit upper (lower)
!>    triangular matrices, and D is symmetric and block diagonal with
!>    1-by-1 and 2-by-2 diagonal blocks.
!>
!>    3. If some D(i,i)=0, so that D is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND).  If the reciprocal of the condition number is
!>    less than machine precision, the routine still goes on to solve
!>    for X and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(R) so that it solves the original system before
!>    equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by S.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>       = 'U':  Upper triangle of A is stored;
!>       = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>     upper triangular part of A contains the upper triangular
!>     part of the matrix A, and the strictly lower triangular
!>     part of A is not referenced.  If UPLO = 'L', the leading
!>     N-by-N lower triangular part of A contains the lower
!>     triangular part of the matrix A, and the strictly upper
!>     triangular part of A is not referenced.
!>
!>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
!>     diag(S)*A*diag(S).
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is REAL array, dimension (LDAF,N)
!>     If FACT = 'F', then AF is an input argument and on entry
!>     contains the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**T or A = L*D*L**T as computed by SSYTRF.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**T or A = L*D*L**T.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains details of the interchanges and the block
!>     structure of D, as determined by SSYTRF.  If IPIV(k) > 0,
!>     then rows and columns k and IPIV(k) were interchanged and
!>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
!>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
!>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
!>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
!>     then rows and columns k+1 and -IPIV(k) were interchanged
!>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains details of the interchanges and the block
!>     structure of D, as determined by SSYTRF.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'Y':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(S) * A * diag(S).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]S
!>          S is REAL array, dimension (N)
!>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
!>     the left and right by diag(S).  S is an input argument if FACT =
!>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
!>     = 'Y', each element of S must be positive.  If S is output, each
!>     element of S is a power of the radix. If S is input, each element
!>     of S should be a power of the radix to ensure a reliable solution
!>     and error estimates. Scaling by powers of the radix does not cause
!>     rounding errors unless the result underflows or overflows.
!>     Rounding errors during scaling lead to refining with a matrix that
!>     is not equivalent to the input matrix, producing error estimates
!>     that may not be reliable.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if EQUED = 'Y', B is overwritten by diag(S)*B;
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit if
!>     EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(S))*X.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is REAL
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is REAL array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the double-precision refinement algorithm,
!>                    possibly with doubled-single computations if the
!>                    compilation environment does not support DOUBLE
!>                    PRECISION.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is REAL array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 504 of file ssysvxx.f.

508*
509* -- LAPACK driver routine --
510* -- LAPACK is a software package provided by Univ. of Tennessee, --
511* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
512*
513* .. Scalar Arguments ..
514 CHARACTER EQUED, FACT, UPLO
515 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
516 $ N_ERR_BNDS
517 REAL RCOND, RPVGRW
518* ..
519* .. Array Arguments ..
520 INTEGER IPIV( * ), IWORK( * )
521 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
522 $ X( LDX, * ), WORK( * )
523 REAL S( * ), PARAMS( * ), BERR( * ),
524 $ ERR_BNDS_NORM( NRHS, * ),
525 $ ERR_BNDS_COMP( NRHS, * )
526* ..
527*
528* ==================================================================
529*
530* .. Parameters ..
531 REAL ZERO, ONE
532 parameter( zero = 0.0e+0, one = 1.0e+0 )
533 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
534 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
535 INTEGER CMP_ERR_I, PIV_GROWTH_I
536 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
537 $ berr_i = 3 )
538 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
539 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
540 $ piv_growth_i = 9 )
541* ..
542* .. Local Scalars ..
543 LOGICAL EQUIL, NOFACT, RCEQU
544 INTEGER INFEQU, J
545 REAL AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
546* ..
547* .. External Functions ..
548 EXTERNAL lsame, slamch, sla_syrpvgrw
549 LOGICAL LSAME
550 REAL SLAMCH, SLA_SYRPVGRW
551* ..
552* .. External Subroutines ..
553 EXTERNAL ssyequb, ssytrf, ssytrs,
555* ..
556* .. Intrinsic Functions ..
557 INTRINSIC max, min
558* ..
559* .. Executable Statements ..
560*
561 info = 0
562 nofact = lsame( fact, 'N' )
563 equil = lsame( fact, 'E' )
564 smlnum = slamch( 'Safe minimum' )
565 bignum = one / smlnum
566 IF( nofact .OR. equil ) THEN
567 equed = 'N'
568 rcequ = .false.
569 ELSE
570 rcequ = lsame( equed, 'Y' )
571 ENDIF
572*
573* Default is failure. If an input parameter is wrong or
574* factorization fails, make everything look horrible. Only the
575* pivot growth is set here, the rest is initialized in SSYRFSX.
576*
577 rpvgrw = zero
578*
579* Test the input parameters. PARAMS is not tested until SSYRFSX.
580*
581 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
582 $ lsame( fact, 'F' ) ) THEN
583 info = -1
584 ELSE IF( .NOT.lsame(uplo, 'U') .AND.
585 $ .NOT.lsame(uplo, 'L') ) THEN
586 info = -2
587 ELSE IF( n.LT.0 ) THEN
588 info = -3
589 ELSE IF( nrhs.LT.0 ) THEN
590 info = -4
591 ELSE IF( lda.LT.max( 1, n ) ) THEN
592 info = -6
593 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
594 info = -8
595 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
596 $ ( rcequ .OR. lsame( equed, 'N' ) ) ) THEN
597 info = -10
598 ELSE
599 IF ( rcequ ) THEN
600 smin = bignum
601 smax = zero
602 DO 10 j = 1, n
603 smin = min( smin, s( j ) )
604 smax = max( smax, s( j ) )
605 10 CONTINUE
606 IF( smin.LE.zero ) THEN
607 info = -11
608 ELSE IF( n.GT.0 ) THEN
609 scond = max( smin, smlnum ) / min( smax, bignum )
610 ELSE
611 scond = one
612 END IF
613 END IF
614 IF( info.EQ.0 ) THEN
615 IF( ldb.LT.max( 1, n ) ) THEN
616 info = -13
617 ELSE IF( ldx.LT.max( 1, n ) ) THEN
618 info = -15
619 END IF
620 END IF
621 END IF
622*
623 IF( info.NE.0 ) THEN
624 CALL xerbla( 'SSYSVXX', -info )
625 RETURN
626 END IF
627*
628 IF( equil ) THEN
629*
630* Compute row and column scalings to equilibrate the matrix A.
631*
632 CALL ssyequb( uplo, n, a, lda, s, scond, amax, work, infequ )
633 IF( infequ.EQ.0 ) THEN
634*
635* Equilibrate the matrix.
636*
637 CALL slaqsy( uplo, n, a, lda, s, scond, amax, equed )
638 rcequ = lsame( equed, 'Y' )
639 END IF
640 END IF
641*
642* Scale the right-hand side.
643*
644 IF( rcequ ) CALL slascl2( n, nrhs, s, b, ldb )
645*
646 IF( nofact .OR. equil ) THEN
647*
648* Compute the LDL^T or UDU^T factorization of A.
649*
650 CALL slacpy( uplo, n, n, a, lda, af, ldaf )
651 CALL ssytrf( uplo, n, af, ldaf, ipiv, work, 5*max(1,n), info )
652*
653* Return if INFO is non-zero.
654*
655 IF( info.GT.0 ) THEN
656*
657* Pivot in column INFO is exactly 0
658* Compute the reciprocal pivot growth factor of the
659* leading rank-deficient INFO columns of A.
660*
661 IF ( n.GT.0 )
662 $ rpvgrw = sla_syrpvgrw(uplo, n, info, a, lda, af,
663 $ ldaf, ipiv, work )
664 RETURN
665 END IF
666 END IF
667*
668* Compute the reciprocal pivot growth factor RPVGRW.
669*
670 IF ( n.GT.0 )
671 $ rpvgrw = sla_syrpvgrw( uplo, n, info, a, lda, af, ldaf,
672 $ ipiv, work )
673*
674* Compute the solution matrix X.
675*
676 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
677 CALL ssytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
678*
679* Use iterative refinement to improve the computed solution and
680* compute error bounds and backward error estimates for it.
681*
682 CALL ssyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
683 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
684 $ err_bnds_comp, nparams, params, work, iwork, info )
685*
686* Scale solutions.
687*
688 IF ( rcequ ) THEN
689 CALL slascl2 ( n, nrhs, s, x, ldx )
690 END IF
691*
692 RETURN
693*
694* End of SSYSVXX
695*
subroutine slascl2(m, n, d, x, ldx)
SLASCL2 performs diagonal scaling on a vector.
Definition slascl2.f:90
subroutine slaqsy(uplo, n, a, lda, s, scond, amax, equed)
SLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.
Definition slaqsy.f:133
subroutine ssyequb(uplo, n, a, lda, s, scond, amax, work, info)
SSYEQUB
Definition ssyequb.f:131
subroutine ssyrfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SSYRFSX
Definition ssyrfsx.f:402
real function sla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite m...
#define min(a, b)
Definition macros.h:20