OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
idealgas_mod Module Reference

Functions/Subroutines

subroutine idealgas (iflag, nel, off, eint, mu, espe, dvol, df, vnew, psh, pnew, dpdm, dpde, eos_struct)

Function/Subroutine Documentation

◆ idealgas()

subroutine idealgas_mod::idealgas ( integer, intent(in) iflag,
integer, intent(in) nel,
dimension(nel), intent(in) off,
dimension(nel), intent(inout) eint,
dimension(nel), intent(in) mu,
dimension(nel), intent(in) espe,
dimension(nel), intent(in) dvol,
dimension(nel), intent(in) df,
dimension(nel), intent(in) vnew,
dimension(nel), intent(inout) psh,
dimension(nel), intent(inout) pnew,
dimension(nel), intent(inout) dpdm,
dimension(nel), intent(inout) dpde,
type(eos_param_), intent(in) eos_struct )

Definition at line 41 of file idealgas.F.

45C-----------------------------------------------
46C M o d u l e s
47C-----------------------------------------------
48 USE constant_mod , ONLY : zero, em15, half, one
49 USE eos_param_mod , ONLY : eos_param_
50 USE eos_param_mod , ONLY : eos_param_
51C-----------------------------------------------
52C D e s c r i p t i o n
53C-----------------------------------------------
54C This subroutine contains numerical solving
55C of IDEAL GAS EOS
56!----------------------------------------------------------------------------
57!! \details STAGGERED SCHEME IS EXECUTED IN TWO PASSES IN EOSMAIN : IFLG=0 THEN IFLG=1
58!! \details COLLOCATED SCHEME IS DOING A SINGLE PASS : IFLG=2
59!! \details
60!! \details STAGGERED SCHEME
61!! \details EOSMAIN / IFLG = 0 : DERIVATIVE CALCULATION FOR SOUND SPEED ESTIMATION c[n+1] REQUIRED FOR PSEUDO-VISCOSITY (DPDE:partial derivative, DPDM:total derivative)
62!! \details MQVISCB : PSEUDO-VISCOSITY Q[n+1]
63!! \details MEINT : INTERNAL ENERGY INTEGRATION FOR E[n+1] : FIRST PART USING P[n], Q[n], and Q[n+1] CONTRIBUTIONS
64!! \details EOSMAIN / IFLG = 1 : UPDATE P[n+1], T[N+1]
65!! \details INTERNAL ENERGY INTEGRATION FOR E[n+1] : LAST PART USING P[n+1] CONTRIBUTION
66!! \details (second order integration dE = -P.dV where P = 0.5(P[n+1] + P[n]) )
67!! \details COLLOCATED SCHEME
68!! \details EOSMAIN / IFLG = 2 : SINGLE PASS FOR P[n+1] AND DERIVATIVES
69!----------------------------------------------------------------------------
70C-----------------------------------------------
71C I m p l i c i t T y p e s
72C-----------------------------------------------
73 IMPLICIT NONE
74#include "my_real.inc"
75C-----------------------------------------------
76C D u m m y A r g u m e n t s
77C-----------------------------------------------
78 INTEGER,INTENT(IN) :: IFLAG, NEL
79 my_real,INTENT(INOUT) :: eint(nel), dpdm(nel), dpde(nel), pnew(nel), psh(nel)
80 my_real,INTENT(IN) :: off(nel),mu(nel),espe(nel),dvol(nel),df(nel),vnew(nel)
81 TYPE(EOS_PARAM_),INTENT(IN) :: EOS_STRUCT
82C-----------------------------------------------
83C L o c a l V a r i a b l e s
84C-----------------------------------------------
85 INTEGER I
86 my_real :: p0,gamma,t0,e0,bb,dvv,pp
87C-----------------------------------------------
88C S o u r c e L i n e s
89C-----------------------------------------------
90
91 gamma = eos_struct%UPARAM(1)
92 p0 = eos_struct%UPARAM(2)
93 t0 = eos_struct%UPARAM(3)
94 e0 = eos_struct%E0
95 psh(1:nel) = eos_struct%PSH
96
97 IF(iflag == 0) THEN
98 DO i=1,nel
99 pp = (gamma-one)*(one+mu(i))*espe(i)
100 dpdm(i) = (gamma-one)*(espe(i)+pp*df(i)) !total derivative
101 dpde(i) = (gamma-one)*(one+mu(i)) !partial derivative
102 pnew(i) = (max(pp,zero)-psh(i))*off(i) ! P(mu[n+1],E[n])
103 ENDDO
104C-----------------------------------------------
105 ELSEIF(iflag == 1) THEN
106 DO i=1,nel
107 bb = (gamma-one)*(one+mu(i))
108 dpde(i) = bb !partial derivative
109 dvv = half*dvol(i)*df(i) / max(em15,vnew(i))
110 pnew(i) = bb*espe(i) / (one+bb*dvv) ! P(mu[n+1],E[n+1])
111 pnew(i) = (max(pnew(i),zero)-psh(i))*off(i)
112 eint(i) = eint(i) - half*dvol(i)*(pnew(i)+psh(i))
113 ENDDO
114C-----------------------------------------------
115 ELSEIF (iflag == 2) THEN
116 DO i=1, nel
117 IF (vnew(i) > zero) THEN
118 pp = (gamma-one)*(one+mu(i))*espe(i) - psh(i)
119 dpdm(i) = (gamma-one)*(espe(i)+(pp+psh(i))*df(i)) !total derivative
120 dpde(i) = (gamma-one)*(one+mu(i)) !partial derivative
121 pnew(i) = pp
122 ENDIF
123 ENDDO
124 ENDIF
125C-----------------------------------------------
126 RETURN
#define my_real
Definition cppsort.cpp:32
#define max(a, b)
Definition macros.h:21