OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
sorgtsqr.f
Go to the documentation of this file.
1*> \brief \b SORGTSQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SORGTSQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
22* $ INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
26* ..
27* .. Array Arguments ..
28* REAL A( LDA, * ), T( LDT, * ), WORK( * )
29* ..
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
37*> which are the first N columns of a product of real orthogonal
38*> matrices of order M which are returned by SLATSQR
39*>
40*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
41*>
42*> See the documentation for SLATSQR.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] M
49*> \verbatim
50*> M is INTEGER
51*> The number of rows of the matrix A. M >= 0.
52*> \endverbatim
53*>
54*> \param[in] N
55*> \verbatim
56*> N is INTEGER
57*> The number of columns of the matrix A. M >= N >= 0.
58*> \endverbatim
59*>
60*> \param[in] MB
61*> \verbatim
62*> MB is INTEGER
63*> The row block size used by SLATSQR to return
64*> arrays A and T. MB > N.
65*> (Note that if MB > M, then M is used instead of MB
66*> as the row block size).
67*> \endverbatim
68*>
69*> \param[in] NB
70*> \verbatim
71*> NB is INTEGER
72*> The column block size used by SLATSQR to return
73*> arrays A and T. NB >= 1.
74*> (Note that if NB > N, then N is used instead of NB
75*> as the column block size).
76*> \endverbatim
77*>
78*> \param[in,out] A
79*> \verbatim
80*> A is REAL array, dimension (LDA,N)
81*>
82*> On entry:
83*>
84*> The elements on and above the diagonal are not accessed.
85*> The elements below the diagonal represent the unit
86*> lower-trapezoidal blocked matrix V computed by SLATSQR
87*> that defines the input matrices Q_in(k) (ones on the
88*> diagonal are not stored) (same format as the output A
89*> below the diagonal in SLATSQR).
90*>
91*> On exit:
92*>
93*> The array A contains an M-by-N orthonormal matrix Q_out,
94*> i.e the columns of A are orthogonal unit vectors.
95*> \endverbatim
96*>
97*> \param[in] LDA
98*> \verbatim
99*> LDA is INTEGER
100*> The leading dimension of the array A. LDA >= max(1,M).
101*> \endverbatim
102*>
103*> \param[in] T
104*> \verbatim
105*> T is REAL array,
106*> dimension (LDT, N * NIRB)
107*> where NIRB = Number_of_input_row_blocks
108*> = MAX( 1, CEIL((M-N)/(MB-N)) )
109*> Let NICB = Number_of_input_col_blocks
110*> = CEIL(N/NB)
111*>
112*> The upper-triangular block reflectors used to define the
113*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
114*> reflectors are stored in compact form in NIRB block
115*> reflector sequences. Each of NIRB block reflector sequences
116*> is stored in a larger NB-by-N column block of T and consists
117*> of NICB smaller NB-by-NB upper-triangular column blocks.
118*> (same format as the output T in SLATSQR).
119*> \endverbatim
120*>
121*> \param[in] LDT
122*> \verbatim
123*> LDT is INTEGER
124*> The leading dimension of the array T.
125*> LDT >= max(1,min(NB1,N)).
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> (workspace) REAL array, dimension (MAX(2,LWORK))
131*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
132*> \endverbatim
133*>
134*> \param[in] LWORK
135*> \verbatim
136*> The dimension of the array WORK. LWORK >= (M+NB)*N.
137*> If LWORK = -1, then a workspace query is assumed.
138*> The routine only calculates the optimal size of the WORK
139*> array, returns this value as the first entry of the WORK
140*> array, and no error message related to LWORK is issued
141*> by XERBLA.
142*> \endverbatim
143*>
144*> \param[out] INFO
145*> \verbatim
146*> INFO is INTEGER
147*> = 0: successful exit
148*> < 0: if INFO = -i, the i-th argument had an illegal value
149*> \endverbatim
150*>
151* Authors:
152* ========
153*
154*> \author Univ. of Tennessee
155*> \author Univ. of California Berkeley
156*> \author Univ. of Colorado Denver
157*> \author NAG Ltd.
158*
159*> \ingroup singleOTHERcomputational
160*
161*> \par Contributors:
162* ==================
163*>
164*> \verbatim
165*>
166*> November 2019, Igor Kozachenko,
167*> Computer Science Division,
168*> University of California, Berkeley
169*>
170*> \endverbatim
171*
172* =====================================================================
173 SUBROUTINE sorgtsqr( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
174 $ INFO )
175 IMPLICIT NONE
176*
177* -- LAPACK computational routine --
178* -- LAPACK is a software package provided by Univ. of Tennessee, --
179* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
180*
181* .. Scalar Arguments ..
182 INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
183* ..
184* .. Array Arguments ..
185 REAL A( LDA, * ), T( LDT, * ), WORK( * )
186* ..
187*
188* =====================================================================
189*
190* .. Parameters ..
191 REAL ONE, ZERO
192 parameter( one = 1.0e+0, zero = 0.0e+0 )
193* ..
194* .. Local Scalars ..
195 LOGICAL LQUERY
196 INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
197* ..
198* .. External Subroutines ..
199 EXTERNAL scopy, slamtsqr, slaset, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC real, max, min
203* ..
204* .. Executable Statements ..
205*
206* Test the input parameters
207*
208 lquery = lwork.EQ.-1
209 info = 0
210 IF( m.LT.0 ) THEN
211 info = -1
212 ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
213 info = -2
214 ELSE IF( mb.LE.n ) THEN
215 info = -3
216 ELSE IF( nb.LT.1 ) THEN
217 info = -4
218 ELSE IF( lda.LT.max( 1, m ) ) THEN
219 info = -6
220 ELSE IF( ldt.LT.max( 1, min( nb, n ) ) ) THEN
221 info = -8
222 ELSE
223*
224* Test the input LWORK for the dimension of the array WORK.
225* This workspace is used to store array C(LDC, N) and WORK(LWORK)
226* in the call to SLAMTSQR. See the documentation for SLAMTSQR.
227*
228 IF( lwork.LT.2 .AND. (.NOT.lquery) ) THEN
229 info = -10
230 ELSE
231*
232* Set block size for column blocks
233*
234 nblocal = min( nb, n )
235*
236* LWORK = -1, then set the size for the array C(LDC,N)
237* in SLAMTSQR call and set the optimal size of the work array
238* WORK(LWORK) in SLAMTSQR call.
239*
240 ldc = m
241 lc = ldc*n
242 lw = n * nblocal
243*
244 lworkopt = lc+lw
245*
246 IF( ( lwork.LT.max( 1, lworkopt ) ).AND.(.NOT.lquery) ) THEN
247 info = -10
248 END IF
249 END IF
250*
251 END IF
252*
253* Handle error in the input parameters and return workspace query.
254*
255 IF( info.NE.0 ) THEN
256 CALL xerbla( 'SORGTSQR', -info )
257 RETURN
258 ELSE IF ( lquery ) THEN
259 work( 1 ) = real( lworkopt )
260 RETURN
261 END IF
262*
263* Quick return if possible
264*
265 IF( min( m, n ).EQ.0 ) THEN
266 work( 1 ) = real( lworkopt )
267 RETURN
268 END IF
269*
270* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
271* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
272* the subdiagonal part of input array A and in the input array T.
273* Perform by the following operation using the routine SLAMTSQR.
274*
275* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
276* ( 0 ) 0 is a (M-N)-by-N zero matrix.
277*
278* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
279* on the diagonal and zeros elsewhere.
280*
281 CALL slaset( 'f', M, N, ZERO, ONE, WORK, LDC )
282*
283* (1b) On input, WORK(1:LDC*N) stores ( I );
284* ( 0 )
285*
286* On output, WORK(1:LDC*N) stores Q1_in.
287*
288 CALL SLAMTSQR( 'l', 'n', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
289 $ WORK, LDC, WORK( LC+1 ), LW, IINFO )
290*
291* (2) Copy the result from the part of the work array (1:M,1:N)
292* with the leading dimension LDC that starts at WORK(1) into
293* the output array A(1:M,1:N) column-by-column.
294*
295 DO J = 1, N
296 CALL SCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
297 END DO
298*
299 WORK( 1 ) = REAL( LWORKOPT )
300 RETURN
301*
302* End of SORGTSQR
303*
304 END
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21
subroutine slamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
SLAMTSQR
Definition slamtsqr.f:197
subroutine sorgtsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
SORGTSQR
Definition sorgtsqr.f:175