OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zhegst.f
Go to the documentation of this file.
1*> \brief \b ZHEGST
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHEGST + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegst.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegst.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegst.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER INFO, ITYPE, LDA, LDB, N
26* ..
27* .. Array Arguments ..
28* COMPLEX*16 A( LDA, * ), B( LDB, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> ZHEGST reduces a complex Hermitian-definite generalized
38*> eigenproblem to standard form.
39*>
40*> If ITYPE = 1, the problem is A*x = lambda*B*x,
41*> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
42*>
43*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
44*> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
45*>
46*> B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
56*> = 2 or 3: compute U*A*U**H or L**H*A*L.
57*> \endverbatim
58*>
59*> \param[in] UPLO
60*> \verbatim
61*> UPLO is CHARACTER*1
62*> = 'U': Upper triangle of A is stored and B is factored as
63*> U**H*U;
64*> = 'L': Lower triangle of A is stored and B is factored as
65*> L*L**H.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrices A and B. N >= 0.
72*> \endverbatim
73*>
74*> \param[in,out] A
75*> \verbatim
76*> A is COMPLEX*16 array, dimension (LDA,N)
77*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
78*> N-by-N upper triangular part of A contains the upper
79*> triangular part of the matrix A, and the strictly lower
80*> triangular part of A is not referenced. If UPLO = 'L', the
81*> leading N-by-N lower triangular part of A contains the lower
82*> triangular part of the matrix A, and the strictly upper
83*> triangular part of A is not referenced.
84*>
85*> On exit, if INFO = 0, the transformed matrix, stored in the
86*> same format as A.
87*> \endverbatim
88*>
89*> \param[in] LDA
90*> \verbatim
91*> LDA is INTEGER
92*> The leading dimension of the array A. LDA >= max(1,N).
93*> \endverbatim
94*>
95*> \param[in,out] B
96*> \verbatim
97*> B is COMPLEX*16 array, dimension (LDB,N)
98*> The triangular factor from the Cholesky factorization of B,
99*> as returned by ZPOTRF.
100*> B is modified by the routine but restored on exit.
101*> \endverbatim
102*>
103*> \param[in] LDB
104*> \verbatim
105*> LDB is INTEGER
106*> The leading dimension of the array B. LDB >= max(1,N).
107*> \endverbatim
108*>
109*> \param[out] INFO
110*> \verbatim
111*> INFO is INTEGER
112*> = 0: successful exit
113*> < 0: if INFO = -i, the i-th argument had an illegal value
114*> \endverbatim
115*
116* Authors:
117* ========
118*
119*> \author Univ. of Tennessee
120*> \author Univ. of California Berkeley
121*> \author Univ. of Colorado Denver
122*> \author NAG Ltd.
123*
124*> \ingroup complex16HEcomputational
125*
126* =====================================================================
127 SUBROUTINE zhegst( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
128*
129* -- LAPACK computational routine --
130* -- LAPACK is a software package provided by Univ. of Tennessee, --
131* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
132*
133* .. Scalar Arguments ..
134 CHARACTER UPLO
135 INTEGER INFO, ITYPE, LDA, LDB, N
136* ..
137* .. Array Arguments ..
138 COMPLEX*16 A( LDA, * ), B( LDB, * )
139* ..
140*
141* =====================================================================
142*
143* .. Parameters ..
144 DOUBLE PRECISION ONE
145 parameter( one = 1.0d+0 )
146 COMPLEX*16 CONE, HALF
147 parameter( cone = ( 1.0d+0, 0.0d+0 ),
148 $ half = ( 0.5d+0, 0.0d+0 ) )
149* ..
150* .. Local Scalars ..
151 LOGICAL UPPER
152 INTEGER K, KB, NB
153* ..
154* .. External Subroutines ..
155 EXTERNAL xerbla, zhegs2, zhemm, zher2k, ztrmm, ztrsm
156* ..
157* .. Intrinsic Functions ..
158 INTRINSIC max, min
159* ..
160* .. External Functions ..
161 LOGICAL LSAME
162 INTEGER ILAENV
163 EXTERNAL lsame, ilaenv
164* ..
165* .. Executable Statements ..
166*
167* Test the input parameters.
168*
169 info = 0
170 upper = lsame( uplo, 'U' )
171 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
172 info = -1
173 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
174 info = -2
175 ELSE IF( n.LT.0 ) THEN
176 info = -3
177 ELSE IF( lda.LT.max( 1, n ) ) THEN
178 info = -5
179 ELSE IF( ldb.LT.max( 1, n ) ) THEN
180 info = -7
181 END IF
182 IF( info.NE.0 ) THEN
183 CALL xerbla( 'ZHEGST', -info )
184 RETURN
185 END IF
186*
187* Quick return if possible
188*
189 IF( n.EQ.0 )
190 $ RETURN
191*
192* Determine the block size for this environment.
193*
194 nb = ilaenv( 1, 'ZHEGST', uplo, n, -1, -1, -1 )
195*
196 IF( nb.LE.1 .OR. nb.GE.n ) THEN
197*
198* Use unblocked code
199*
200 CALL zhegs2( itype, uplo, n, a, lda, b, ldb, info )
201 ELSE
202*
203* Use blocked code
204*
205 IF( itype.EQ.1 ) THEN
206 IF( upper ) THEN
207*
208* Compute inv(U**H)*A*inv(U)
209*
210 DO 10 k = 1, n, nb
211 kb = min( n-k+1, nb )
212*
213* Update the upper triangle of A(k:n,k:n)
214*
215 CALL zhegs2( itype, uplo, kb, a( k, k ), lda,
216 $ b( k, k ), ldb, info )
217 IF( k+kb.LE.n ) THEN
218 CALL ztrsm( 'left', UPLO, 'conjugate transpose',
219 $ 'non-unit', KB, N-K-KB+1, CONE,
220 $ B( K, K ), LDB, A( K, K+KB ), LDA )
221 CALL ZHEMM( 'left', UPLO, KB, N-K-KB+1, -HALF,
222 $ A( K, K ), LDA, B( K, K+KB ), LDB,
223 $ CONE, A( K, K+KB ), LDA )
224 CALL ZHER2K( UPLO, 'conjugate transpose', N-K-KB+1,
225 $ KB, -CONE, A( K, K+KB ), LDA,
226 $ B( K, K+KB ), LDB, ONE,
227 $ A( K+KB, K+KB ), LDA )
228 CALL ZHEMM( 'left', UPLO, KB, N-K-KB+1, -HALF,
229 $ A( K, K ), LDA, B( K, K+KB ), LDB,
230 $ CONE, A( K, K+KB ), LDA )
231 CALL ZTRSM( 'right', UPLO, 'no transpose',
232 $ 'non-unit', KB, N-K-KB+1, CONE,
233 $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
234 $ LDA )
235 END IF
236 10 CONTINUE
237 ELSE
238*
239* Compute inv(L)*A*inv(L**H)
240*
241 DO 20 K = 1, N, NB
242 KB = MIN( N-K+1, NB )
243*
244* Update the lower triangle of A(k:n,k:n)
245*
246 CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
247 $ B( K, K ), LDB, INFO )
248.LE. IF( K+KBN ) THEN
249 CALL ZTRSM( 'right', UPLO, 'conjugate transpose',
250 $ 'non-unit', N-K-KB+1, KB, CONE,
251 $ B( K, K ), LDB, A( K+KB, K ), LDA )
252 CALL ZHEMM( 'right', UPLO, N-K-KB+1, KB, -HALF,
253 $ A( K, K ), LDA, B( K+KB, K ), LDB,
254 $ CONE, A( K+KB, K ), LDA )
255 CALL ZHER2K( UPLO, 'no transpose', N-K-KB+1, KB,
256 $ -CONE, A( K+KB, K ), LDA,
257 $ B( K+KB, K ), LDB, ONE,
258 $ A( K+KB, K+KB ), LDA )
259 CALL ZHEMM( 'right', UPLO, N-K-KB+1, KB, -HALF,
260 $ A( K, K ), LDA, B( K+KB, K ), LDB,
261 $ CONE, A( K+KB, K ), LDA )
262 CALL ZTRSM( 'left', UPLO, 'no transpose',
263 $ 'non-unit', N-K-KB+1, KB, CONE,
264 $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
265 $ LDA )
266 END IF
267 20 CONTINUE
268 END IF
269 ELSE
270 IF( UPPER ) THEN
271*
272* Compute U*A*U**H
273*
274 DO 30 K = 1, N, NB
275 KB = MIN( N-K+1, NB )
276*
277* Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
278*
279 CALL ZTRMM( 'left', UPLO, 'no transpose', 'non-unit',
280 $ K-1, KB, CONE, B, LDB, A( 1, K ), LDA )
281 CALL ZHEMM( 'right', UPLO, K-1, KB, HALF, A( K, K ),
282 $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
283 $ LDA )
284 CALL ZHER2K( UPLO, 'no transpose', K-1, KB, CONE,
285 $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
286 $ LDA )
287 CALL ZHEMM( 'right', UPLO, K-1, KB, HALF, A( K, K ),
288 $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
289 $ LDA )
290 CALL ZTRMM( 'right', UPLO, 'conjugate transpose',
291 $ 'non-unit', K-1, KB, CONE, B( K, K ), LDB,
292 $ A( 1, K ), LDA )
293 CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
294 $ B( K, K ), LDB, INFO )
295 30 CONTINUE
296 ELSE
297*
298* Compute L**H*A*L
299*
300 DO 40 K = 1, N, NB
301 KB = MIN( N-K+1, NB )
302*
303* Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
304*
305 CALL ZTRMM( 'right', UPLO, 'no transpose', 'non-unit',
306 $ KB, K-1, CONE, B, LDB, A( K, 1 ), LDA )
307 CALL ZHEMM( 'left', UPLO, KB, K-1, HALF, A( K, K ),
308 $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
309 $ LDA )
310 CALL ZHER2K( UPLO, 'conjugate transpose', K-1, KB,
311 $ CONE, A( K, 1 ), LDA, B( K, 1 ), LDB,
312 $ ONE, A, LDA )
313 CALL ZHEMM( 'left', UPLO, KB, K-1, HALF, A( K, K ),
314 $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
315 $ LDA )
316 CALL ZTRMM( 'left', UPLO, 'conjugate transpose',
317 $ 'non-unit', KB, K-1, CONE, B( K, K ), LDB,
318 $ A( K, 1 ), LDA )
319 CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
320 $ B( K, K ), LDB, INFO )
321 40 CONTINUE
322 END IF
323 END IF
324 END IF
325 RETURN
326*
327* End of ZHEGST
328*
329 END
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine zhegst(itype, uplo, n, a, lda, b, ldb, info)
ZHEGST
Definition zhegst.f:128
subroutine zhegs2(itype, uplo, n, a, lda, b, ldb, info)
ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorizatio...
Definition zhegs2.f:128
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
Definition ztrmm.f:177
subroutine zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
ZHEMM
Definition zhemm.f:191
subroutine zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZHER2K
Definition zher2k.f:198
subroutine ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRSM
Definition ztrsm.f:180
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21