100 DOUBLE PRECISION FUNCTION zlanht( NORM, N, D, E )
111 DOUBLE PRECISION ( * )
118 DOUBLE PRECISION one, zero
119 parameter( one = 1.0d+0, zero = 0.0d+0 )
123 DOUBLE PRECISION anorm, scale, sum
133 INTRINSIC abs,
max, sqrt
143 ANORM = ABS( D( N ) )
146.LT..OR.
IF( ANORM SUM DISNAN( SUM ) ) ANORM = SUM
148.LT..OR.
IF( ANORM SUM DISNAN( SUM ) ) ANORM = SUM
150 ELSE IF( LSAME( NORM, 'o.OR..EQ.
' ) NORM'1.OR.
'
151 $ LSAME( NORM, 'i
' ) ) THEN
156 ANORM = ABS( D( 1 ) )
158 ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
159 SUM = ABS( E( N-1 ) )+ABS( D( N ) )
160.LT..OR.
IF( ANORM SUM DISNAN( SUM ) ) ANORM = SUM
162 SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
163.LT..OR.
IF( ANORM SUM DISNAN( SUM ) ) ANORM = SUM
166 ELSE IF( ( LSAME( NORM, 'f.OR.
' ) ) ( LSAME( NORM, 'e
' ) ) ) THEN
173 CALL ZLASSQ( N-1, E, 1, SCALE, SUM )
176 CALL DLASSQ( N, D, 1, SCALE, SUM )
177 ANORM = SCALE*SQRT( SUM )
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
subroutine dlassq(n, x, incx, scl, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
subroutine zlassq(n, x, incx, scl, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
logical function disnan(din)
DISNAN tests input for NaN.
logical function lsame(ca, cb)
LSAME
double precision function zlanht(norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...