124 DOUBLE PRECISION FUNCTION zlantp( NORM, UPLO, DIAG, N, AP, WORK )
131 CHARACTER diag,
norm, uplo
135 DOUBLE PRECISION work( * )
142 DOUBLE PRECISION one, zero
143 parameter( one = 1.0d+0, zero = 0.0d+0 )
148 DOUBLE PRECISION scale, sum,
169 IF(
lsame( diag,
'U' ) )
THEN
171 IF(
lsame( uplo, 'u
' ) ) THEN
173 DO 10 I = K, K + J - 2
175.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
181 DO 30 I = K + 1, K + N - J
183.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
190 IF( LSAME( UPLO, 'u
' ) ) THEN
192 DO 50 I = K, K + J - 1
194.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
200 DO 70 I = K, K + N - J
202.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
208 ELSE IF( ( LSAME( NORM, 'o.OR..EQ.
' ) ) ( NORM'1
' ) ) THEN
214 UDIAG = LSAME( DIAG, 'u
' )
215 IF( LSAME( UPLO, 'u
' ) ) THEN
219 DO 90 I = K, K + J - 2
220 SUM = SUM + ABS( AP( I ) )
224 DO 100 I = K, K + J - 1
225 SUM = SUM + ABS( AP( I ) )
229.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
235 DO 120 I = K + 1, K + N - J
236 SUM = SUM + ABS( AP( I ) )
240 DO 130 I = K, K + N - J
241 SUM = SUM + ABS( AP( I ) )
245.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
248 ELSE IF( LSAME( NORM, 'i
' ) ) THEN
253 IF( LSAME( UPLO, 'u
' ) ) THEN
254 IF( LSAME( DIAG, 'u
' ) ) THEN
260 WORK( I ) = WORK( I ) + ABS( AP( K ) )
271 WORK( I ) = WORK( I ) + ABS( AP( K ) )
277 IF( LSAME( DIAG, 'u
' ) ) THEN
284 WORK( I ) = WORK( I ) + ABS( AP( K ) )
294 WORK( I ) = WORK( I ) + ABS( AP( K ) )
303.LT..OR.
IF( VALUE SUM DISNAN( SUM ) ) VALUE = SUM
305 ELSE IF( ( LSAME( NORM, 'f.OR.
' ) ) ( LSAME( NORM, 'e
' ) ) ) THEN
309 IF( LSAME( UPLO, 'u
' ) ) THEN
310 IF( LSAME( DIAG, 'u
' ) ) THEN
315 CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
323 CALL ZLASSQ( J, AP( K ), 1, SCALE, SUM )
328 IF( LSAME( DIAG, 'u
' ) ) THEN
333 CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
341 CALL ZLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
346 VALUE = SCALE*SQRT( SUM )
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
subroutine zlassq(n, x, incx, scl, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
logical function disnan(din)
DISNAN tests input for NaN.
logical function lsame(ca, cb)
LSAME
double precision function zlantp(norm, uplo, diag, n, ap, work)
ZLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...