OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zqrt05.f
Go to the documentation of this file.
1*> \brief \b ZQRT05
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZQRT05(M,N,L,NB,RESULT)
12*
13* .. Scalar Arguments ..
14* INTEGER LWORK, M, N, L, NB, LDT
15* .. Return values ..
16* DOUBLE PRECISION RESULT(6)
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> ZQRT05 tests ZTPQRT and ZTPMQRT.
25*> \endverbatim
26*
27* Arguments:
28* ==========
29*
30*> \param[in] M
31*> \verbatim
32*> M is INTEGER
33*> Number of rows in lower part of the test matrix.
34*> \endverbatim
35*>
36*> \param[in] N
37*> \verbatim
38*> N is INTEGER
39*> Number of columns in test matrix.
40*> \endverbatim
41*>
42*> \param[in] L
43*> \verbatim
44*> L is INTEGER
45*> The number of rows of the upper trapezoidal part the
46*> lower test matrix. 0 <= L <= M.
47*> \endverbatim
48*>
49*> \param[in] NB
50*> \verbatim
51*> NB is INTEGER
52*> Block size of test matrix. NB <= N.
53*> \endverbatim
54*>
55*> \param[out] RESULT
56*> \verbatim
57*> RESULT is DOUBLE PRECISION array, dimension (6)
58*> Results of each of the six tests below.
59*>
60*> RESULT(1) = | A - Q R |
61*> RESULT(2) = | I - Q^H Q |
62*> RESULT(3) = | Q C - Q C |
63*> RESULT(4) = | Q^H C - Q^H C |
64*> RESULT(5) = | C Q - C Q |
65*> RESULT(6) = | C Q^H - C Q^H |
66*> \endverbatim
67*
68* Authors:
69* ========
70*
71*> \author Univ. of Tennessee
72*> \author Univ. of California Berkeley
73*> \author Univ. of Colorado Denver
74*> \author NAG Ltd.
75*
76*> \ingroup complex16_lin
77*
78* =====================================================================
79 SUBROUTINE zqrt05(M,N,L,NB,RESULT)
80 IMPLICIT NONE
81*
82* -- LAPACK test routine --
83* -- LAPACK is a software package provided by Univ. of Tennessee, --
84* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
85*
86* .. Scalar Arguments ..
87 INTEGER LWORK, M, N, L, NB, LDT
88* .. Return values ..
89 DOUBLE PRECISION RESULT(6)
90*
91* =====================================================================
92*
93* ..
94* .. Local allocatable arrays
95 COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
96 $ R(:,:), WORK( : ), T(:,:),
97 $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
98 DOUBLE PRECISION, ALLOCATABLE :: RWORK(:)
99*
100* .. Parameters ..
101 DOUBLE PRECISION ZERO
102 COMPLEX*16 ONE, CZERO
103 parameter( zero = 0.0, one = (1.0,0.0), czero=(0.0,0.0) )
104* ..
105* .. Local Scalars ..
106 INTEGER INFO, J, K, M2, NP1
107 DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
108* ..
109* .. Local Arrays ..
110 INTEGER ISEED( 4 )
111* ..
112* .. External Functions ..
113 DOUBLE PRECISION DLAMCH
114 DOUBLE PRECISION ZLANGE, ZLANSY
115 LOGICAL LSAME
116 EXTERNAL dlamch, zlange, zlansy, lsame
117* ..
118* .. Data statements ..
119 DATA iseed / 1988, 1989, 1990, 1991 /
120*
121 eps = dlamch( 'Epsilon' )
122 k = n
123 m2 = m+n
124 IF( m.GT.0 ) THEN
125 np1 = n+1
126 ELSE
127 np1 = 1
128 END IF
129 lwork = m2*m2*nb
130*
131* Dynamically allocate all arrays
132*
133 ALLOCATE(a(m2,n),af(m2,n),q(m2,m2),r(m2,m2),rwork(m2),
134 $ work(lwork),t(nb,n),c(m2,n),cf(m2,n),
135 $ d(n,m2),df(n,m2) )
136*
137* Put random stuff into A
138*
139 ldt=nb
140 CALL zlaset( 'Full', m2, n, czero, czero, a, m2 )
141 CALL zlaset( 'Full', nb, n, czero, czero, t, nb )
142 DO j=1,n
143 CALL zlarnv( 2, iseed, j, a( 1, j ) )
144 END DO
145 IF( m.GT.0 ) THEN
146 DO j=1,n
147 CALL zlarnv( 2, iseed, m-l, a( min(n+m,n+1), j ) )
148 END DO
149 END IF
150 IF( l.GT.0 ) THEN
151 DO j=1,n
152 CALL zlarnv( 2, iseed, min(j,l), a( min(n+m,n+m-l+1), j ) )
153 END DO
154 END IF
155*
156* Copy the matrix A to the array AF.
157*
158 CALL zlacpy( 'Full', m2, n, a, m2, af, m2 )
159*
160* Factor the matrix A in the array AF.
161*
162 CALL ztpqrt( m,n,l,nb,af,m2,af(np1,1),m2,t,ldt,work,info)
163*
164* Generate the (M+N)-by-(M+N) matrix Q by applying H to I
165*
166 CALL zlaset( 'full', M2, M2, CZERO, ONE, Q, M2 )
167 CALL ZGEMQRT( 'r', 'n', M2, M2, K, NB, AF, M2, T, LDT, Q, M2,
168 $ WORK, INFO )
169*
170* Copy R
171*
172 CALL ZLASET( 'full', M2, N, CZERO, CZERO, R, M2 )
173 CALL ZLACPY( 'upper', M2, N, AF, M2, R, M2 )
174*
175* Compute |R - Q'*A| / |A| and store in RESULT(1)
176*
177 CALL ZGEMM( 'c', 'n', M2, N, M2, -ONE, Q, M2, A, M2, ONE, R, M2 )
178 ANORM = ZLANGE( '1', M2, N, A, M2, RWORK )
179 RESID = ZLANGE( '1', M2, N, R, M2, RWORK )
180.GT. IF( ANORMZERO ) THEN
181 RESULT( 1 ) = RESID / (EPS*ANORM*MAX(1,M2))
182 ELSE
183 RESULT( 1 ) = ZERO
184 END IF
185*
186* Compute |I - Q'*Q| and store in RESULT(2)
187*
188 CALL ZLASET( 'full', M2, M2, CZERO, ONE, R, M2 )
189 CALL ZHERK( 'u', 'c', M2, M2, DREAL(-ONE), Q, M2, DREAL(ONE),
190 $ R, M2 )
191 RESID = ZLANSY( '1', 'upper', M2, R, M2, RWORK )
192 RESULT( 2 ) = RESID / (EPS*MAX(1,M2))
193*
194* Generate random m-by-n matrix C and a copy CF
195*
196 DO J=1,N
197 CALL ZLARNV( 2, ISEED, M2, C( 1, J ) )
198 END DO
199 CNORM = ZLANGE( '1', M2, N, C, M2, RWORK)
200 CALL ZLACPY( 'full', M2, N, C, M2, CF, M2 )
201*
202* Apply Q to C as Q*C
203*
204 CALL ZTPMQRT( 'l','n', M,N,K,L,NB,AF(NP1,1),M2,T,LDT,CF,M2,
205 $ CF(NP1,1),M2,WORK,INFO)
206*
207* Compute |Q*C - Q*C| / |C|
208*
209 CALL ZGEMM( 'n', 'n', M2, N, M2, -ONE, Q, M2, C, M2, ONE, CF, M2 )
210 RESID = ZLANGE( '1', M2, N, CF, M2, RWORK )
211.GT. IF( CNORMZERO ) THEN
212 RESULT( 3 ) = RESID / (EPS*MAX(1,M2)*CNORM)
213 ELSE
214 RESULT( 3 ) = ZERO
215 END IF
216*
217* Copy C into CF again
218*
219 CALL ZLACPY( 'full', M2, N, C, M2, CF, M2 )
220*
221* Apply Q to C as QT*C
222*
223 CALL ZTPMQRT( 'l','c',M,N,K,L,NB,AF(NP1,1),M2,T,LDT,CF,M2,
224 $ CF(NP1,1),M2,WORK,INFO)
225*
226* Compute |QT*C - QT*C| / |C|
227*
228 CALL ZGEMM('c','n',M2,N,M2,-ONE,Q,M2,C,M2,ONE,CF,M2)
229 RESID = ZLANGE( '1', M2, N, CF, M2, RWORK )
230.GT. IF( CNORMZERO ) THEN
231 RESULT( 4 ) = RESID / (EPS*MAX(1,M2)*CNORM)
232 ELSE
233 RESULT( 4 ) = ZERO
234 END IF
235*
236* Generate random n-by-m matrix D and a copy DF
237*
238 DO J=1,M2
239 CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
240 END DO
241 DNORM = ZLANGE( '1', N, M2, D, N, RWORK)
242 CALL ZLACPY( 'full', N, M2, D, N, DF, N )
243*
244* Apply Q to D as D*Q
245*
246 CALL ZTPMQRT('r','n',N,M,N,L,NB,AF(NP1,1),M2,T,LDT,DF,N,
247 $ DF(1,NP1),N,WORK,INFO)
248*
249* Compute |D*Q - D*Q| / |D|
250*
251 CALL ZGEMM('n','N',n,m2,m2,-one,d,n,q,m2,one,df,n)
252 resid = zlange('1',n, m2,df,n,rwork )
253 IF( cnorm.GT.zero ) THEN
254 result( 5 ) = resid / (eps*max(1,m2)*dnorm)
255 ELSE
256 result( 5 ) = zero
257 END IF
258*
259* Copy D into DF again
260*
261 CALL zlacpy('Full',n,m2,d,n,df,n )
262*
263* Apply Q to D as D*QT
264*
265 CALL ztpmqrt('R','C',n,m,n,l,nb,af(np1,1),m2,t,ldt,df,n,
266 $ df(1,np1),n,work,info)
267
268*
269* Compute |D*QT - D*QT| / |D|
270*
271 CALL zgemm( 'N', 'C', n, m2, m2, -one, d, n, q, m2, one, df, n )
272 resid = zlange( '1', n, m2, df, n, rwork )
273 IF( cnorm.GT.zero ) THEN
274 result( 6 ) = resid / (eps*max(1,m2)*dnorm)
275 ELSE
276 result( 6 ) = zero
277 END IF
278*
279* Deallocate all arrays
280*
281 DEALLOCATE ( a, af, q, r, rwork, work, t, c, d, cf, df)
282 RETURN
283 END
284
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:115
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
subroutine zlarnv(idist, iseed, n, x)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition zlarnv.f:99
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine ztpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
ZTPMQRT
Definition ztpmqrt.f:216
subroutine ztpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
ZTPQRT
Definition ztpqrt.f:189
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:187
subroutine zqrt05(m, n, l, nb, result)
ZQRT05
Definition zqrt05.f:80
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21