Functions | |
| subroutine | zggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info) |
| ZGGSVP | |
| subroutine | zlatzm (side, m, n, v, incv, tau, c1, c2, ldc, work) |
| ZLATZM | |
| subroutine | ztzrqf (m, n, a, lda, tau, info) |
| ZTZRQF | |
| subroutine | zbbcsd (jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b22d, b22e, rwork, lrwork, info) |
| ZBBCSD | |
| subroutine | zbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, rwork, info) |
| ZBDSQR | |
| subroutine | zgghd3 (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork, info) |
| ZGGHD3 | |
| subroutine | zgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info) |
| ZGGHRD | |
| subroutine | zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info) |
| ZGGQRF | |
| subroutine | zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info) |
| ZGGRQF | |
| subroutine | zggsvp3 (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, lwork, info) |
| ZGGSVP3 | |
| subroutine | zgsvj0 (jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork, info) |
| ZGSVJ0 pre-processor for the routine zgesvj. | |
| subroutine | zgsvj1 (jobv, m, n, n1, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork, info) |
| ZGSVJ1 pre-processor for the routine zgesvj, applies Jacobi rotations targeting only particular pivots. | |
| subroutine | zhbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info) |
| ZHBGST | |
| subroutine | zhbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info) |
| ZHBTRD | |
| subroutine | zhetrd_hb2st (stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info) |
| ZHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric tridiagonal form T | |
| subroutine | zhfrk (transr, uplo, trans, n, k, alpha, a, lda, beta, c) |
| ZHFRK performs a Hermitian rank-k operation for matrix in RFP format. | |
| subroutine | zhpcon (uplo, n, ap, ipiv, anorm, rcond, work, info) |
| ZHPCON | |
| subroutine | zhpgst (itype, uplo, n, ap, bp, info) |
| ZHPGST | |
| subroutine | zhprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZHPRFS | |
| subroutine | zhptrd (uplo, n, ap, d, e, tau, info) |
| ZHPTRD | |
| subroutine | zhptrf (uplo, n, ap, ipiv, info) |
| ZHPTRF | |
| subroutine | zhptri (uplo, n, ap, ipiv, work, info) |
| ZHPTRI | |
| subroutine | zhptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info) |
| ZHPTRS | |
| subroutine | zhsein (side, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info) |
| ZHSEIN | |
| subroutine | zhseqr (job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info) |
| ZHSEQR | |
| subroutine | zla_lin_berr (n, nz, nrhs, res, ayb, berr) |
| ZLA_LIN_BERR computes a component-wise relative backward error. | |
| subroutine | zla_wwaddw (n, x, y, w) |
| ZLA_WWADDW adds a vector into a doubled-single vector. | |
| subroutine | zlaed0 (qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info) |
| ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. | |
| subroutine | zlaed7 (n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info) |
| ZLAED7 used by ZSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense. | |
| subroutine | zlaed8 (k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum, info) |
| ZLAED8 used by ZSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense. | |
| subroutine | zlals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info) |
| ZLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd. | |
| subroutine | zlalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info) |
| ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. | |
| subroutine | zlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork, iwork, info) |
| ZLALSD uses the singular value decomposition of A to solve the least squares problem. | |
| double precision function | zlanhf (norm, transr, uplo, n, a, work) |
| ZLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format. | |
| subroutine | zlarscl2 (m, n, d, x, ldx) |
| ZLARSCL2 performs reciprocal diagonal scaling on a vector. | |
| subroutine | zlarz (side, m, n, l, v, incv, tau, c, ldc, work) |
| ZLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix. | |
| subroutine | zlarzb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork) |
| ZLARZB applies a block reflector or its conjugate-transpose to a general matrix. | |
| subroutine | zlarzt (direct, storev, n, k, v, ldv, tau, t, ldt) |
| ZLARZT forms the triangular factor T of a block reflector H = I - vtvH. | |
| subroutine | zlascl2 (m, n, d, x, ldx) |
| ZLASCL2 performs diagonal scaling on a vector. | |
| subroutine | zlatrz (m, n, l, a, lda, tau, work) |
| ZLATRZ factors an upper trapezoidal matrix by means of unitary transformations. | |
| subroutine | zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info) |
| ZPBCON | |
| subroutine | zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info) |
| ZPBEQU | |
| subroutine | zpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZPBRFS | |
| subroutine | zpbstf (uplo, n, kd, ab, ldab, info) |
| ZPBSTF | |
| subroutine | zpbtf2 (uplo, n, kd, ab, ldab, info) |
| ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm). | |
| subroutine | zpbtrf (uplo, n, kd, ab, ldab, info) |
| ZPBTRF | |
| subroutine | zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info) |
| ZPBTRS | |
| subroutine | zpftrf (transr, uplo, n, a, info) |
| ZPFTRF | |
| subroutine | zpftri (transr, uplo, n, a, info) |
| ZPFTRI | |
| subroutine | zpftrs (transr, uplo, n, nrhs, a, b, ldb, info) |
| ZPFTRS | |
| subroutine | zppcon (uplo, n, ap, anorm, rcond, work, rwork, info) |
| ZPPCON | |
| subroutine | zppequ (uplo, n, ap, s, scond, amax, info) |
| ZPPEQU | |
| subroutine | zpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZPPRFS | |
| subroutine | zpptrf (uplo, n, ap, info) |
| ZPPTRF | |
| subroutine | zpptri (uplo, n, ap, info) |
| ZPPTRI | |
| subroutine | zpptrs (uplo, n, nrhs, ap, b, ldb, info) |
| ZPPTRS | |
| subroutine | zpstf2 (uplo, n, a, lda, piv, rank, tol, work, info) |
| ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix. | |
| subroutine | zpstrf (uplo, n, a, lda, piv, rank, tol, work, info) |
| ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix. | |
| subroutine | zspcon (uplo, n, ap, ipiv, anorm, rcond, work, info) |
| ZSPCON | |
| subroutine | zsprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZSPRFS | |
| subroutine | zsptrf (uplo, n, ap, ipiv, info) |
| ZSPTRF | |
| subroutine | zsptri (uplo, n, ap, ipiv, work, info) |
| ZSPTRI | |
| subroutine | zsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info) |
| ZSPTRS | |
| subroutine | zstedc (compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info) |
| ZSTEDC | |
| subroutine | zstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info) |
| ZSTEGR | |
| subroutine | zstein (n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info) |
| ZSTEIN | |
| subroutine | zstemr (jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac, work, lwork, iwork, liwork, info) |
| ZSTEMR | |
| subroutine | zsteqr (compz, n, d, e, z, ldz, work, info) |
| ZSTEQR | |
| subroutine | ztbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info) |
| ZTBCON | |
| subroutine | ztbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZTBRFS | |
| subroutine | ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info) |
| ZTBTRS | |
| subroutine | ztfsm (transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb) |
| ZTFSM solves a matrix equation (one operand is a triangular matrix in RFP format). | |
| subroutine | ztftri (transr, uplo, diag, n, a, info) |
| ZTFTRI | |
| subroutine | ztfttp (transr, uplo, n, arf, ap, info) |
| ZTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP). | |
| subroutine | ztfttr (transr, uplo, n, arf, a, lda, info) |
| ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR). | |
| subroutine | ztgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info) |
| ZTGSEN | |
| subroutine | ztgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info) |
| ZTGSJA | |
| subroutine | ztgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm, m, work, lwork, iwork, info) |
| ZTGSNA | |
| subroutine | ztpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info) |
| ZTPCON | |
| subroutine | ztpmqrt (side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info) |
| ZTPMQRT | |
| subroutine | ztpqrt (m, n, l, nb, a, lda, b, ldb, t, ldt, work, info) |
| ZTPQRT | |
| subroutine | ztpqrt2 (m, n, l, a, lda, b, ldb, t, ldt, info) |
| ZTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. | |
| subroutine | ztprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZTPRFS | |
| subroutine | ztptri (uplo, diag, n, ap, info) |
| ZTPTRI | |
| subroutine | ztptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info) |
| ZTPTRS | |
| subroutine | ztpttf (transr, uplo, n, ap, arf, info) |
| ZTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF). | |
| subroutine | ztpttr (uplo, n, ap, a, lda, info) |
| ZTPTTR copies a triangular matrix from the standard packed format (TP) to the standard full format (TR). | |
| subroutine | ztrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info) |
| ZTRCON | |
| subroutine | ztrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork, info) |
| ZTREVC | |
| subroutine | ztrevc3 (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork, rwork, lrwork, info) |
| ZTREVC3 | |
| subroutine | ztrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info) |
| ZTREXC | |
| subroutine | ztrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work, rwork, info) |
| ZTRRFS | |
| subroutine | ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info) |
| ZTRSEN | |
| subroutine | ztrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work, ldwork, rwork, info) |
| ZTRSNA | |
| subroutine | ztrti2 (uplo, diag, n, a, lda, info) |
| ZTRTI2 computes the inverse of a triangular matrix (unblocked algorithm). | |
| subroutine | ztrtri (uplo, diag, n, a, lda, info) |
| ZTRTRI | |
| subroutine | ztrtrs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, info) |
| ZTRTRS | |
| subroutine | ztrttf (transr, uplo, n, a, lda, arf, info) |
| ZTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF). | |
| subroutine | ztrttp (uplo, n, a, lda, ap, info) |
| ZTRTTP copies a triangular matrix from the standard full format (TR) to the standard packed format (TP). | |
| subroutine | ztzrzf (m, n, a, lda, tau, work, lwork, info) |
| ZTZRZF | |
| subroutine | zunbdb (trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info) |
| ZUNBDB | |
| subroutine | zunbdb1 (m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info) |
| ZUNBDB1 | |
| subroutine | zunbdb2 (m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info) |
| ZUNBDB2 | |
| subroutine | zunbdb3 (m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info) |
| ZUNBDB3 | |
| subroutine | zunbdb4 (m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom, work, lwork, info) |
| ZUNBDB4 | |
| subroutine | zunbdb5 (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info) |
| ZUNBDB5 | |
| subroutine | zunbdb6 (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info) |
| ZUNBDB6 | |
| recursive subroutine | zuncsd (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info) |
| ZUNCSD | |
| subroutine | zuncsd2by1 (jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, work, lwork, rwork, lrwork, iwork, info) |
| ZUNCSD2BY1 | |
| subroutine | zung2l (m, n, k, a, lda, tau, work, info) |
| ZUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm). | |
| subroutine | zung2r (m, n, k, a, lda, tau, work, info) |
| ZUNG2R | |
| subroutine | zunghr (n, ilo, ihi, a, lda, tau, work, lwork, info) |
| ZUNGHR | |
| subroutine | zungl2 (m, n, k, a, lda, tau, work, info) |
| ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm). | |
| subroutine | zunglq (m, n, k, a, lda, tau, work, lwork, info) |
| ZUNGLQ | |
| subroutine | zungql (m, n, k, a, lda, tau, work, lwork, info) |
| ZUNGQL | |
| subroutine | zungqr (m, n, k, a, lda, tau, work, lwork, info) |
| ZUNGQR | |
| subroutine | zungr2 (m, n, k, a, lda, tau, work, info) |
| ZUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm). | |
| subroutine | zungrq (m, n, k, a, lda, tau, work, lwork, info) |
| ZUNGRQ | |
| subroutine | zungtr (uplo, n, a, lda, tau, work, lwork, info) |
| ZUNGTR | |
| subroutine | zungtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
| ZUNGTSQR | |
| subroutine | zungtsqr_row (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
| ZUNGTSQR_ROW | |
| subroutine | zunhr_col (m, n, nb, a, lda, t, ldt, d, info) |
| ZUNHR_COL | |
| subroutine | zunm2l (side, trans, m, n, k, a, lda, tau, c, ldc, work, info) |
| ZUNM2L multiplies a general matrix by the unitary matrix from a QL factorization determined by cgeqlf (unblocked algorithm). | |
| subroutine | zunm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info) |
| ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf (unblocked algorithm). | |
| subroutine | zunmbr (vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMBR | |
| subroutine | zunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMHR | |
| subroutine | zunml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info) |
| ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm). | |
| subroutine | zunmlq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMLQ | |
| subroutine | zunmql (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMQL | |
| subroutine | zunmqr (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMQR | |
| subroutine | zunmr2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info) |
| ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm). | |
| subroutine | zunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info) |
| ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm). | |
| subroutine | zunmrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMRQ | |
| subroutine | zunmrz (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMRZ | |
| subroutine | zunmtr (side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info) |
| ZUNMTR | |
| subroutine | zupgtr (uplo, n, ap, tau, q, ldq, work, info) |
| ZUPGTR | |
| subroutine | zupmtr (side, uplo, trans, m, n, ap, tau, c, ldc, work, info) |
| ZUPMTR | |
This is the group of complex16 other Computational routines
| subroutine zbbcsd | ( | character | jobu1, |
| character | jobu2, | ||
| character | jobv1t, | ||
| character | jobv2t, | ||
| character | trans, | ||
| integer | m, | ||
| integer | p, | ||
| integer | q, | ||
| double precision, dimension( * ) | theta, | ||
| double precision, dimension( * ) | phi, | ||
| complex*16, dimension( ldu1, * ) | u1, | ||
| integer | ldu1, | ||
| complex*16, dimension( ldu2, * ) | u2, | ||
| integer | ldu2, | ||
| complex*16, dimension( ldv1t, * ) | v1t, | ||
| integer | ldv1t, | ||
| complex*16, dimension( ldv2t, * ) | v2t, | ||
| integer | ldv2t, | ||
| double precision, dimension( * ) | b11d, | ||
| double precision, dimension( * ) | b11e, | ||
| double precision, dimension( * ) | b12d, | ||
| double precision, dimension( * ) | b12e, | ||
| double precision, dimension( * ) | b21d, | ||
| double precision, dimension( * ) | b21e, | ||
| double precision, dimension( * ) | b22d, | ||
| double precision, dimension( * ) | b22e, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer | info ) |
ZBBCSD
Download ZBBCSD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZBBCSD computes the CS decomposition of a unitary matrix in !> bidiagonal-block form, !> !> !> [ B11 | B12 0 0 ] !> [ 0 | 0 -I 0 ] !> X = [----------------] !> [ B21 | B22 0 0 ] !> [ 0 | 0 0 I ] !> !> [ C | -S 0 0 ] !> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H !> = [---------] [---------------] [---------] . !> [ | U2 ] [ S | C 0 0 ] [ | V2 ] !> [ 0 | 0 0 I ] !> !> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger !> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be !> transposed and/or permuted. This can be done in constant time using !> the TRANS and SIGNS options. See ZUNCSD for details.) !> !> The bidiagonal matrices B11, B12, B21, and B22 are represented !> implicitly by angles THETA(1:Q) and PHI(1:Q-1). !> !> The unitary matrices U1, U2, V1T, and V2T are input/output. !> The input matrices are pre- or post-multiplied by the appropriate !> singular vector matrices. !>
| [in] | JOBU1 | !> JOBU1 is CHARACTER !> = 'Y': U1 is updated; !> otherwise: U1 is not updated. !> |
| [in] | JOBU2 | !> JOBU2 is CHARACTER !> = 'Y': U2 is updated; !> otherwise: U2 is not updated. !> |
| [in] | JOBV1T | !> JOBV1T is CHARACTER !> = 'Y': V1T is updated; !> otherwise: V1T is not updated. !> |
| [in] | JOBV2T | !> JOBV2T is CHARACTER !> = 'Y': V2T is updated; !> otherwise: V2T is not updated. !> |
| [in] | TRANS | !> TRANS is CHARACTER !> = 'T': X, U1, U2, V1T, and V2T are stored in row-major !> order; !> otherwise: X, U1, U2, V1T, and V2T are stored in column- !> major order. !> |
| [in] | M | !> M is INTEGER !> The number of rows and columns in X, the unitary matrix in !> bidiagonal-block form. !> |
| [in] | P | !> P is INTEGER !> The number of rows in the top-left block of X. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in the top-left block of X. !> 0 <= Q <= MIN(P,M-P,M-Q). !> |
| [in,out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> On entry, the angles THETA(1),...,THETA(Q) that, along with !> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block !> form. On exit, the angles whose cosines and sines define the !> diagonal blocks in the CS decomposition. !> |
| [in,out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., !> THETA(Q), define the matrix in bidiagonal-block form. !> |
| [in,out] | U1 | !> U1 is COMPLEX*16 array, dimension (LDU1,P) !> On entry, a P-by-P matrix. On exit, U1 is postmultiplied !> by the left singular vector matrix common to [ B11 ; 0 ] and !> [ B12 0 0 ; 0 -I 0 0 ]. !> |
| [in] | LDU1 | !> LDU1 is INTEGER !> The leading dimension of the array U1, LDU1 >= MAX(1,P). !> |
| [in,out] | U2 | !> U2 is COMPLEX*16 array, dimension (LDU2,M-P) !> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is !> postmultiplied by the left singular vector matrix common to !> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. !> |
| [in] | LDU2 | !> LDU2 is INTEGER !> The leading dimension of the array U2, LDU2 >= MAX(1,M-P). !> |
| [in,out] | V1T | !> V1T is COMPLEX*16 array, dimension (LDV1T,Q) !> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied !> by the conjugate transpose of the right singular vector !> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. !> |
| [in] | LDV1T | !> LDV1T is INTEGER !> The leading dimension of the array V1T, LDV1T >= MAX(1,Q). !> |
| [in,out] | V2T | !> V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) !> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is !> premultiplied by the conjugate transpose of the right !> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and !> [ B22 0 0 ; 0 0 I ]. !> |
| [in] | LDV2T | !> LDV2T is INTEGER !> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). !> |
| [out] | B11D | !> B11D is DOUBLE PRECISION array, dimension (Q) !> When ZBBCSD converges, B11D contains the cosines of THETA(1), !> ..., THETA(Q). If ZBBCSD fails to converge, then B11D !> contains the diagonal of the partially reduced top-left !> block. !> |
| [out] | B11E | !> B11E is DOUBLE PRECISION array, dimension (Q-1) !> When ZBBCSD converges, B11E contains zeros. If ZBBCSD fails !> to converge, then B11E contains the superdiagonal of the !> partially reduced top-left block. !> |
| [out] | B12D | !> B12D is DOUBLE PRECISION array, dimension (Q) !> When ZBBCSD converges, B12D contains the negative sines of !> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then !> B12D contains the diagonal of the partially reduced top-right !> block. !> |
| [out] | B12E | !> B12E is DOUBLE PRECISION array, dimension (Q-1) !> When ZBBCSD converges, B12E contains zeros. If ZBBCSD fails !> to converge, then B12E contains the subdiagonal of the !> partially reduced top-right block. !> |
| [out] | B21D | !> B21D is DOUBLE PRECISION array, dimension (Q) !> When ZBBCSD converges, B21D contains the negative sines of !> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then !> B21D contains the diagonal of the partially reduced bottom-left !> block. !> |
| [out] | B21E | !> B21E is DOUBLE PRECISION array, dimension (Q-1) !> When ZBBCSD converges, B21E contains zeros. If ZBBCSD fails !> to converge, then B21E contains the subdiagonal of the !> partially reduced bottom-left block. !> |
| [out] | B22D | !> B22D is DOUBLE PRECISION array, dimension (Q) !> When ZBBCSD converges, B22D contains the negative sines of !> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then !> B22D contains the diagonal of the partially reduced bottom-right !> block. !> |
| [out] | B22E | !> B22E is DOUBLE PRECISION array, dimension (Q-1) !> When ZBBCSD converges, B22E contains zeros. If ZBBCSD fails !> to converge, then B22E contains the subdiagonal of the !> partially reduced bottom-right block. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q). !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the RWORK array, !> returns this value as the first entry of the work array, and !> no error message related to LRWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if ZBBCSD did not converge, INFO specifies the number !> of nonzero entries in PHI, and B11D, B11E, etc., !> contain the partially reduced matrix. !> |
!> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8))) !> TOLMUL controls the convergence criterion of the QR loop. !> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they !> are within TOLMUL*EPS of either bound. !>
Definition at line 328 of file zbbcsd.f.
| subroutine zbdsqr | ( | character | uplo, |
| integer | n, | ||
| integer | ncvt, | ||
| integer | nru, | ||
| integer | ncc, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldvt, * ) | vt, | ||
| integer | ldvt, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZBDSQR
Download ZBDSQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZBDSQR computes the singular values and, optionally, the right and/or !> left singular vectors from the singular value decomposition (SVD) of !> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit !> zero-shift QR algorithm. The SVD of B has the form !> !> B = Q * S * P**H !> !> where S is the diagonal matrix of singular values, Q is an orthogonal !> matrix of left singular vectors, and P is an orthogonal matrix of !> right singular vectors. If left singular vectors are requested, this !> subroutine actually returns U*Q instead of Q, and, if right singular !> vectors are requested, this subroutine returns P**H*VT instead of !> P**H, for given complex input matrices U and VT. When U and VT are !> the unitary matrices that reduce a general matrix A to bidiagonal !> form: A = U*B*VT, as computed by ZGEBRD, then !> !> A = (U*Q) * S * (P**H*VT) !> !> is the SVD of A. Optionally, the subroutine may also compute Q**H*C !> for a given complex input matrix C. !> !> See by J. Demmel and W. Kahan, !> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, !> no. 5, pp. 873-912, Sept 1990) and !> by !> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics !> Department, University of California at Berkeley, July 1992 !> for a detailed description of the algorithm. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': B is upper bidiagonal; !> = 'L': B is lower bidiagonal. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix B. N >= 0. !> |
| [in] | NCVT | !> NCVT is INTEGER !> The number of columns of the matrix VT. NCVT >= 0. !> |
| [in] | NRU | !> NRU is INTEGER !> The number of rows of the matrix U. NRU >= 0. !> |
| [in] | NCC | !> NCC is INTEGER !> The number of columns of the matrix C. NCC >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the n diagonal elements of the bidiagonal matrix B. !> On exit, if INFO=0, the singular values of B in decreasing !> order. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the N-1 offdiagonal elements of the bidiagonal !> matrix B. !> On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E !> will contain the diagonal and superdiagonal elements of a !> bidiagonal matrix orthogonally equivalent to the one given !> as input. !> |
| [in,out] | VT | !> VT is COMPLEX*16 array, dimension (LDVT, NCVT) !> On entry, an N-by-NCVT matrix VT. !> On exit, VT is overwritten by P**H * VT. !> Not referenced if NCVT = 0. !> |
| [in] | LDVT | !> LDVT is INTEGER !> The leading dimension of the array VT. !> LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. !> |
| [in,out] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> On entry, an NRU-by-N matrix U. !> On exit, U is overwritten by U * Q. !> Not referenced if NRU = 0. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,NRU). !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC, NCC) !> On entry, an N-by-NCC matrix C. !> On exit, C is overwritten by Q**H * C. !> Not referenced if NCC = 0. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. !> LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (4*N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: If INFO = -i, the i-th argument had an illegal value !> > 0: the algorithm did not converge; D and E contain the !> elements of a bidiagonal matrix which is orthogonally !> similar to the input matrix B; if INFO = i, i !> elements of E have not converged to zero. !> |
!> TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8))) !> TOLMUL controls the convergence criterion of the QR loop. !> If it is positive, TOLMUL*EPS is the desired relative !> precision in the computed singular values. !> If it is negative, abs(TOLMUL*EPS*sigma_max) is the !> desired absolute accuracy in the computed singular !> values (corresponds to relative accuracy !> abs(TOLMUL*EPS) in the largest singular value. !> abs(TOLMUL) should be between 1 and 1/EPS, and preferably !> between 10 (for fast convergence) and .1/EPS !> (for there to be some accuracy in the results). !> Default is to lose at either one eighth or 2 of the !> available decimal digits in each computed singular value !> (whichever is smaller). !> !> MAXITR INTEGER, default = 6 !> MAXITR controls the maximum number of passes of the !> algorithm through its inner loop. The algorithms stops !> (and so fails to converge) if the number of passes !> through the inner loop exceeds MAXITR*N**2. !>
Definition at line 220 of file zbdsqr.f.
| subroutine zgghd3 | ( | character | compq, |
| character | compz, | ||
| integer | n, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGGHD3
Download ZGGHD3 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGGHD3 reduces a pair of complex matrices (A,B) to generalized upper !> Hessenberg form using unitary transformations, where A is a !> general matrix and B is upper triangular. The form of the !> generalized eigenvalue problem is !> A*x = lambda*B*x, !> and B is typically made upper triangular by computing its QR !> factorization and moving the unitary matrix Q to the left side !> of the equation. !> !> This subroutine simultaneously reduces A to a Hessenberg matrix H: !> Q**H*A*Z = H !> and transforms B to another upper triangular matrix T: !> Q**H*B*Z = T !> in order to reduce the problem to its standard form !> H*y = lambda*T*y !> where y = Z**H*x. !> !> The unitary matrices Q and Z are determined as products of Givens !> rotations. They may either be formed explicitly, or they may be !> postmultiplied into input matrices Q1 and Z1, so that !> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H !> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H !> If Q1 is the unitary matrix from the QR factorization of B in the !> original equation A*x = lambda*B*x, then ZGGHD3 reduces the original !> problem to generalized Hessenberg form. !> !> This is a blocked variant of CGGHRD, using matrix-matrix !> multiplications for parts of the computation to enhance performance. !>
| [in] | COMPQ | !> COMPQ is CHARACTER*1 !> = 'N': do not compute Q; !> = 'I': Q is initialized to the unit matrix, and the !> unitary matrix Q is returned; !> = 'V': Q must contain a unitary matrix Q1 on entry, !> and the product Q1*Q is returned. !> |
| [in] | COMPZ | !> COMPZ is CHARACTER*1 !> = 'N': do not compute Z; !> = 'I': Z is initialized to the unit matrix, and the !> unitary matrix Z is returned; !> = 'V': Z must contain a unitary matrix Z1 on entry, !> and the product Z1*Z is returned. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> ILO and IHI mark the rows and columns of A which are to be !> reduced. It is assumed that A is already upper triangular !> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are !> normally set by a previous call to ZGGBAL; otherwise they !> should be set to 1 and N respectively. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the N-by-N general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> rest is set to zero. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> On entry, the N-by-N upper triangular matrix B. !> On exit, the upper triangular matrix T = Q**H B Z. The !> elements below the diagonal are set to zero. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, N) !> On entry, if COMPQ = 'V', the unitary matrix Q1, typically !> from the QR factorization of B. !> On exit, if COMPQ='I', the unitary matrix Q, and if !> COMPQ = 'V', the product Q1*Q. !> Not referenced if COMPQ='N'. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. !> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, N) !> On entry, if COMPZ = 'V', the unitary matrix Z1. !> On exit, if COMPZ='I', the unitary matrix Z, and if !> COMPZ = 'V', the product Z1*Z. !> Not referenced if COMPZ='N'. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. !> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1. !> For optimum performance LWORK >= 6*N*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> This routine reduces A to Hessenberg form and maintains B in triangular form !> using a blocked variant of Moler and Stewart's original algorithm, !> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti !> (BIT 2008). !>
Definition at line 225 of file zgghd3.f.
| subroutine zgghrd | ( | character | compq, |
| character | compz, | ||
| integer | n, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| integer | info ) |
ZGGHRD
Download ZGGHRD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper !> Hessenberg form using unitary transformations, where A is a !> general matrix and B is upper triangular. The form of the !> generalized eigenvalue problem is !> A*x = lambda*B*x, !> and B is typically made upper triangular by computing its QR !> factorization and moving the unitary matrix Q to the left side !> of the equation. !> !> This subroutine simultaneously reduces A to a Hessenberg matrix H: !> Q**H*A*Z = H !> and transforms B to another upper triangular matrix T: !> Q**H*B*Z = T !> in order to reduce the problem to its standard form !> H*y = lambda*T*y !> where y = Z**H*x. !> !> The unitary matrices Q and Z are determined as products of Givens !> rotations. They may either be formed explicitly, or they may be !> postmultiplied into input matrices Q1 and Z1, so that !> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H !> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H !> If Q1 is the unitary matrix from the QR factorization of B in the !> original equation A*x = lambda*B*x, then ZGGHRD reduces the original !> problem to generalized Hessenberg form. !>
| [in] | COMPQ | !> COMPQ is CHARACTER*1 !> = 'N': do not compute Q; !> = 'I': Q is initialized to the unit matrix, and the !> unitary matrix Q is returned; !> = 'V': Q must contain a unitary matrix Q1 on entry, !> and the product Q1*Q is returned. !> |
| [in] | COMPZ | !> COMPZ is CHARACTER*1 !> = 'N': do not compute Z; !> = 'I': Z is initialized to the unit matrix, and the !> unitary matrix Z is returned; !> = 'V': Z must contain a unitary matrix Z1 on entry, !> and the product Z1*Z is returned. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> ILO and IHI mark the rows and columns of A which are to be !> reduced. It is assumed that A is already upper triangular !> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are !> normally set by a previous call to ZGGBAL; otherwise they !> should be set to 1 and N respectively. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the N-by-N general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> rest is set to zero. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> On entry, the N-by-N upper triangular matrix B. !> On exit, the upper triangular matrix T = Q**H B Z. The !> elements below the diagonal are set to zero. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, N) !> On entry, if COMPQ = 'V', the unitary matrix Q1, typically !> from the QR factorization of B. !> On exit, if COMPQ='I', the unitary matrix Q, and if !> COMPQ = 'V', the product Q1*Q. !> Not referenced if COMPQ='N'. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. !> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, N) !> On entry, if COMPZ = 'V', the unitary matrix Z1. !> On exit, if COMPZ='I', the unitary matrix Z, and if !> COMPZ = 'V', the product Z1*Z. !> Not referenced if COMPZ='N'. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. !> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> This routine reduces A to Hessenberg and B to triangular form by !> an unblocked reduction, as described in _Matrix_Computations_, !> by Golub and van Loan (Johns Hopkins Press). !>
Definition at line 202 of file zgghrd.f.
| subroutine zggqrf | ( | integer | n, |
| integer | m, | ||
| integer | p, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | taua, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | taub, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGGQRF
Download ZGGQRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A !> and an N-by-P matrix B: !> !> A = Q*R, B = Q*T*Z, !> !> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, !> and R and T assume one of the forms: !> !> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, !> ( 0 ) N-M N M-N !> M !> !> where R11 is upper triangular, and !> !> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, !> P-N N ( T21 ) P !> P !> !> where T12 or T21 is upper triangular. !> !> In particular, if B is square and nonsingular, the GQR factorization !> of A and B implicitly gives the QR factorization of inv(B)*A: !> !> inv(B)*A = Z**H * (inv(T)*R) !> !> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the !> conjugate transpose of matrix Z. !>
| [in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,M) !> On entry, the N-by-M matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(N,M)-by-M upper trapezoidal matrix R (R is !> upper triangular if N >= M); the elements below the diagonal, !> with the array TAUA, represent the unitary matrix Q as a !> product of min(N,M) elementary reflectors (see Further !> Details). !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (min(N,M)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q (see Further Details). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,P) !> On entry, the N-by-P matrix B. !> On exit, if N <= P, the upper triangle of the subarray !> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; !> if N > P, the elements on and above the (N-P)-th subdiagonal !> contain the N-by-P upper trapezoidal matrix T; the remaining !> elements, with the array TAUB, represent the unitary !> matrix Z as a product of elementary reflectors (see Further !> Details). !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (min(N,P)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Z (see Further Details). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N,M,P). !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the QR factorization !> of an N-by-M matrix, NB2 is the optimal blocksize for the !> RQ factorization of an N-by-P matrix, and NB3 is the optimal !> blocksize for a call of ZUNMQR. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(n,m). !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**H !> !> where taua is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), !> and taua in TAUA(i). !> To form Q explicitly, use LAPACK subroutine ZUNGQR. !> To use Q to update another matrix, use LAPACK subroutine ZUNMQR. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) . . . H(k), where k = min(n,p). !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**H !> !> where taub is a complex scalar, and v is a complex vector with !> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in !> B(n-k+i,1:p-k+i-1), and taub in TAUB(i). !> To form Z explicitly, use LAPACK subroutine ZUNGRQ. !> To use Z to update another matrix, use LAPACK subroutine ZUNMRQ. !>
Definition at line 213 of file zggqrf.f.
| subroutine zggrqf | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | taua, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | taub, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGGRQF
Download ZGGRQF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGGRQF computes a generalized RQ factorization of an M-by-N matrix A !> and a P-by-N matrix B: !> !> A = R*Q, B = Z*T*Q, !> !> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary !> matrix, and R and T assume one of the forms: !> !> if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, !> N-M M ( R21 ) N !> N !> !> where R12 or R21 is upper triangular, and !> !> if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, !> ( 0 ) P-N P N-P !> N !> !> where T11 is upper triangular. !> !> In particular, if B is square and nonsingular, the GRQ factorization !> of A and B implicitly gives the RQ factorization of A*inv(B): !> !> A*inv(B) = (R*inv(T))*Z**H !> !> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the !> conjugate transpose of the matrix Z. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, if M <= N, the upper triangle of the subarray !> A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; !> if M > N, the elements on and above the (M-N)-th subdiagonal !> contain the M-by-N upper trapezoidal matrix R; the remaining !> elements, with the array TAUA, represent the unitary !> matrix Q as a product of elementary reflectors (see Further !> Details). !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q (see Further Details). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, the elements on and above the diagonal of the array !> contain the min(P,N)-by-N upper trapezoidal matrix T (T is !> upper triangular if P >= N); the elements below the diagonal, !> with the array TAUB, represent the unitary matrix Z as a !> product of elementary reflectors (see Further Details). !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
| [out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Z (see Further Details). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N,M,P). !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the RQ factorization !> of an M-by-N matrix, NB2 is the optimal blocksize for the !> QR factorization of a P-by-N matrix, and NB3 is the optimal !> blocksize for a call of ZUNMRQ. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO=-i, the i-th argument had an illegal value. !> |
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**H !> !> where taua is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in !> A(m-k+i,1:n-k+i-1), and taua in TAUA(i). !> To form Q explicitly, use LAPACK subroutine ZUNGRQ. !> To use Q to update another matrix, use LAPACK subroutine ZUNMRQ. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) . . . H(k), where k = min(p,n). !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**H !> !> where taub is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), !> and taub in TAUB(i). !> To form Z explicitly, use LAPACK subroutine ZUNGQR. !> To use Z to update another matrix, use LAPACK subroutine ZUNMQR. !>
Definition at line 212 of file zggrqf.f.
| subroutine zggsvp | ( | character | jobu, |
| character | jobv, | ||
| character | jobq, | ||
| integer | m, | ||
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision | tola, | ||
| double precision | tolb, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| integer, dimension( * ) | iwork, | ||
| double precision, dimension( * ) | rwork, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZGGSVP
Download ZGGSVP + dependencies [TGZ] [ZIP] [TXT]
!> !> This routine is deprecated and has been replaced by routine ZGGSVP3. !> !> ZGGSVP computes unitary matrices U, V and Q such that !> !> N-K-L K L !> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**H*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> ZGGSVD. !>
| [in] | JOBU | !> JOBU is CHARACTER*1 !> = 'U': Unitary matrix U is computed; !> = 'N': U is not computed. !> |
| [in] | JOBV | !> JOBV is CHARACTER*1 !> = 'V': Unitary matrix V is computed; !> = 'N': V is not computed. !> |
| [in] | JOBQ | !> JOBQ is CHARACTER*1 !> = 'Q': Unitary matrix Q is computed; !> = 'N': Q is not computed. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix described in !> the Purpose section. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
| [in] | TOLA | !> TOLA is DOUBLE PRECISION !> |
| [in] | TOLB | !> TOLB is DOUBLE PRECISION !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MAZHEPS, !> TOLB = MAX(P,N)*norm(B)*MAZHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !> |
| [out] | K | !> K is INTEGER !> |
| [out] | L | !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section. !> K + L = effective numerical rank of (A**H,B**H)**H. !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU,M) !> If JOBU = 'U', U contains the unitary matrix U. !> If JOBU = 'N', U is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> |
| [out] | V | !> V is COMPLEX*16 array, dimension (LDV,P) !> If JOBV = 'V', V contains the unitary matrix V. !> If JOBV = 'N', V is not referenced. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the unitary matrix Q. !> If JOBQ = 'N', Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization !> with column pivoting to detect the effective numerical rank of the !> a matrix. It may be replaced by a better rank determination strategy. !>
Definition at line 262 of file zggsvp.f.
| subroutine zggsvp3 | ( | character | jobu, |
| character | jobv, | ||
| character | jobq, | ||
| integer | m, | ||
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision | tola, | ||
| double precision | tolb, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| integer, dimension( * ) | iwork, | ||
| double precision, dimension( * ) | rwork, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGGSVP3
Download ZGGSVP3 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGGSVP3 computes unitary matrices U, V and Q such that !> !> N-K-L K L !> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**H*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> ZGGSVD3. !>
| [in] | JOBU | !> JOBU is CHARACTER*1 !> = 'U': Unitary matrix U is computed; !> = 'N': U is not computed. !> |
| [in] | JOBV | !> JOBV is CHARACTER*1 !> = 'V': Unitary matrix V is computed; !> = 'N': V is not computed. !> |
| [in] | JOBQ | !> JOBQ is CHARACTER*1 !> = 'Q': Unitary matrix Q is computed; !> = 'N': Q is not computed. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix described in !> the Purpose section. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
| [in] | TOLA | !> TOLA is DOUBLE PRECISION !> |
| [in] | TOLB | !> TOLB is DOUBLE PRECISION !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MAZHEPS, !> TOLB = MAX(P,N)*norm(B)*MAZHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !> |
| [out] | K | !> K is INTEGER !> |
| [out] | L | !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section. !> K + L = effective numerical rank of (A**H,B**H)**H. !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU,M) !> If JOBU = 'U', U contains the unitary matrix U. !> If JOBU = 'N', U is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> |
| [out] | V | !> V is COMPLEX*16 array, dimension (LDV,P) !> If JOBV = 'V', V contains the unitary matrix V. !> If JOBV = 'N', V is not referenced. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the unitary matrix Q. !> If JOBQ = 'N', Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The subroutine uses LAPACK subroutine ZGEQP3 for the QR factorization !> with column pivoting to detect the effective numerical rank of the !> a matrix. It may be replaced by a better rank determination strategy. !> !> ZGGSVP3 replaces the deprecated subroutine ZGGSVP. !> !>
Definition at line 275 of file zggsvp3.f.
| subroutine zgsvj0 | ( | character*1 | jobv, |
| integer | m, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( n ) | d, | ||
| double precision, dimension( n ) | sva, | ||
| integer | mv, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| double precision | eps, | ||
| double precision | sfmin, | ||
| double precision | tol, | ||
| integer | nsweep, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGSVJ0 pre-processor for the routine zgesvj.
Download ZGSVJ0 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGSVJ0 is called from ZGESVJ as a pre-processor and that is its main !> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but !> it does not check convergence (stopping criterion). Few tuning !> parameters (marked by [TP]) are available for the implementer. !>
| [in] | JOBV | !> JOBV is CHARACTER*1 !> Specifies whether the output from this procedure is used !> to compute the matrix V: !> = 'V': the product of the Jacobi rotations is accumulated !> by postmulyiplying the N-by-N array V. !> (See the description of V.) !> = 'A': the product of the Jacobi rotations is accumulated !> by postmulyiplying the MV-by-N array V. !> (See the descriptions of MV and V.) !> = 'N': the Jacobi rotations are not accumulated. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the input matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the input matrix A. !> M >= N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, M-by-N matrix A, such that A*diag(D) represents !> the input matrix. !> On exit, !> A_onexit * diag(D_onexit) represents the input matrix A*diag(D) !> post-multiplied by a sequence of Jacobi rotations, where the !> rotation threshold and the total number of sweeps are given in !> TOL and NSWEEP, respectively. !> (See the descriptions of D, TOL and NSWEEP.) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in,out] | D | !> D is COMPLEX*16 array, dimension (N) !> The array D accumulates the scaling factors from the complex scaled !> Jacobi rotations. !> On entry, A*diag(D) represents the input matrix. !> On exit, A_onexit*diag(D_onexit) represents the input matrix !> post-multiplied by a sequence of Jacobi rotations, where the !> rotation threshold and the total number of sweeps are given in !> TOL and NSWEEP, respectively. !> (See the descriptions of A, TOL and NSWEEP.) !> |
| [in,out] | SVA | !> SVA is DOUBLE PRECISION array, dimension (N) !> On entry, SVA contains the Euclidean norms of the columns of !> the matrix A*diag(D). !> On exit, SVA contains the Euclidean norms of the columns of !> the matrix A_onexit*diag(D_onexit). !> |
| [in] | MV | !> MV is INTEGER !> If JOBV = 'A', then MV rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'N', then MV is not referenced. !> |
| [in,out] | V | !> V is COMPLEX*16 array, dimension (LDV,N) !> If JOBV = 'V' then N rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'A' then MV rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'N', then V is not referenced. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V, LDV >= 1. !> If JOBV = 'V', LDV >= N. !> If JOBV = 'A', LDV >= MV. !> |
| [in] | EPS | !> EPS is DOUBLE PRECISION
!> EPS = DLAMCH('Epsilon')
!> |
| [in] | SFMIN | !> SFMIN is DOUBLE PRECISION
!> SFMIN = DLAMCH('Safe Minimum')
!> |
| [in] | TOL | !> TOL is DOUBLE PRECISION !> TOL is the threshold for Jacobi rotations. For a pair !> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is !> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. !> |
| [in] | NSWEEP | !> NSWEEP is INTEGER !> NSWEEP is the number of sweeps of Jacobi rotations to be !> performed. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> LWORK is the dimension of WORK. LWORK >= M. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, then the i-th argument had an illegal value !> |
Contributor: Zlatko Drmac (Zagreb, Croatia)
Definition at line 216 of file zgsvj0.f.
| subroutine zgsvj1 | ( | character*1 | jobv, |
| integer | m, | ||
| integer | n, | ||
| integer | n1, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( n ) | d, | ||
| double precision, dimension( n ) | sva, | ||
| integer | mv, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| double precision | eps, | ||
| double precision | sfmin, | ||
| double precision | tol, | ||
| integer | nsweep, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZGSVJ1 pre-processor for the routine zgesvj, applies Jacobi rotations targeting only particular pivots.
Download ZGSVJ1 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZGSVJ1 is called from ZGESVJ as a pre-processor and that is its main !> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but !> it targets only particular pivots and it does not check convergence !> (stopping criterion). Few tuning parameters (marked by [TP]) are !> available for the implementer. !> !> Further Details !> ~~~~~~~~~~~~~~~ !> ZGSVJ1 applies few sweeps of Jacobi rotations in the column space of !> the input M-by-N matrix A. The pivot pairs are taken from the (1,2) !> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The !> block-entries (tiles) of the (1,2) off-diagonal block are marked by the !> [x]'s in the following scheme: !> !> | * * * [x] [x] [x]| !> | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. !> | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. !> |[x] [x] [x] * * * | !> |[x] [x] [x] * * * | !> |[x] [x] [x] * * * | !> !> In terms of the columns of A, the first N1 columns are rotated 'against' !> the remaining N-N1 columns, trying to increase the angle between the !> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is !> tiled using quadratic tiles of side KBL. Here, KBL is a tuning parameter. !> The number of sweeps is given in NSWEEP and the orthogonality threshold !> is given in TOL. !>
| [in] | JOBV | !> JOBV is CHARACTER*1 !> Specifies whether the output from this procedure is used !> to compute the matrix V: !> = 'V': the product of the Jacobi rotations is accumulated !> by postmulyiplying the N-by-N array V. !> (See the description of V.) !> = 'A': the product of the Jacobi rotations is accumulated !> by postmulyiplying the MV-by-N array V. !> (See the descriptions of MV and V.) !> = 'N': the Jacobi rotations are not accumulated. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the input matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the input matrix A. !> M >= N >= 0. !> |
| [in] | N1 | !> N1 is INTEGER !> N1 specifies the 2 x 2 block partition, the first N1 columns are !> rotated 'against' the remaining N-N1 columns of A. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, M-by-N matrix A, such that A*diag(D) represents !> the input matrix. !> On exit, !> A_onexit * D_onexit represents the input matrix A*diag(D) !> post-multiplied by a sequence of Jacobi rotations, where the !> rotation threshold and the total number of sweeps are given in !> TOL and NSWEEP, respectively. !> (See the descriptions of N1, D, TOL and NSWEEP.) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in,out] | D | !> D is COMPLEX*16 array, dimension (N) !> The array D accumulates the scaling factors from the fast scaled !> Jacobi rotations. !> On entry, A*diag(D) represents the input matrix. !> On exit, A_onexit*diag(D_onexit) represents the input matrix !> post-multiplied by a sequence of Jacobi rotations, where the !> rotation threshold and the total number of sweeps are given in !> TOL and NSWEEP, respectively. !> (See the descriptions of N1, A, TOL and NSWEEP.) !> |
| [in,out] | SVA | !> SVA is DOUBLE PRECISION array, dimension (N) !> On entry, SVA contains the Euclidean norms of the columns of !> the matrix A*diag(D). !> On exit, SVA contains the Euclidean norms of the columns of !> the matrix onexit*diag(D_onexit). !> |
| [in] | MV | !> MV is INTEGER !> If JOBV = 'A', then MV rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'N', then MV is not referenced. !> |
| [in,out] | V | !> V is COMPLEX*16 array, dimension (LDV,N) !> If JOBV = 'V' then N rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'A' then MV rows of V are post-multipled by a !> sequence of Jacobi rotations. !> If JOBV = 'N', then V is not referenced. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V, LDV >= 1. !> If JOBV = 'V', LDV >= N. !> If JOBV = 'A', LDV >= MV. !> |
| [in] | EPS | !> EPS is DOUBLE PRECISION
!> EPS = DLAMCH('Epsilon')
!> |
| [in] | SFMIN | !> SFMIN is DOUBLE PRECISION
!> SFMIN = DLAMCH('Safe Minimum')
!> |
| [in] | TOL | !> TOL is DOUBLE PRECISION !> TOL is the threshold for Jacobi rotations. For a pair !> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is !> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. !> |
| [in] | NSWEEP | !> NSWEEP is INTEGER !> NSWEEP is the number of sweeps of Jacobi rotations to be !> performed. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> LWORK is the dimension of WORK. LWORK >= M. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, then the i-th argument had an illegal value !> |
Definition at line 234 of file zgsvj1.f.
| subroutine zhbgst | ( | character | vect, |
| character | uplo, | ||
| integer | n, | ||
| integer | ka, | ||
| integer | kb, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| complex*16, dimension( ldbb, * ) | bb, | ||
| integer | ldbb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZHBGST
Download ZHBGST + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHBGST reduces a complex Hermitian-definite banded generalized !> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, !> such that C has the same bandwidth as A. !> !> B must have been previously factorized as S**H*S by ZPBSTF, using a !> split Cholesky factorization. A is overwritten by C = X**H*A*X, where !> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the !> bandwidth of A. !>
| [in] | VECT | !> VECT is CHARACTER*1 !> = 'N': do not form the transformation matrix X; !> = 'V': form X. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
| [in] | KA | !> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !> |
| [in] | KB | !> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the transformed matrix X**H*A*X, stored in the same !> format as A. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !> |
| [in] | BB | !> BB is COMPLEX*16 array, dimension (LDBB,N) !> The banded factor S from the split Cholesky factorization of !> B, as returned by ZPBSTF, stored in the first kb+1 rows of !> the array. !> |
| [in] | LDBB | !> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !> |
| [out] | X | !> X is COMPLEX*16 array, dimension (LDX,N) !> If VECT = 'V', the n-by-n matrix X. !> If VECT = 'N', the array X is not referenced. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. !> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 163 of file zhbgst.f.
| subroutine zhbtrd | ( | character | vect, |
| character | uplo, | ||
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZHBTRD
Download ZHBTRD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHBTRD reduces a complex Hermitian band matrix A to real symmetric !> tridiagonal form T by a unitary similarity transformation: !> Q**H * A * Q = T. !>
| [in] | VECT | !> VECT is CHARACTER*1 !> = 'N': do not form Q; !> = 'V': form Q; !> = 'U': update a matrix X, by forming X*Q. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> On exit, the diagonal elements of AB are overwritten by the !> diagonal elements of the tridiagonal matrix T; if KD > 0, the !> elements on the first superdiagonal (if UPLO = 'U') or the !> first subdiagonal (if UPLO = 'L') are overwritten by the !> off-diagonal elements of T; the rest of AB is overwritten by !> values generated during the reduction. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of the tridiagonal matrix T. !> |
| [out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, if VECT = 'U', then Q must contain an N-by-N !> matrix X; if VECT = 'N' or 'V', then Q need not be set. !> !> On exit: !> if VECT = 'V', Q contains the N-by-N unitary matrix Q; !> if VECT = 'U', Q contains the product X*Q; !> if VECT = 'N', the array Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. !> LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> Modified by Linda Kaufman, Bell Labs. !>
Definition at line 161 of file zhbtrd.f.
| subroutine zhetrd_hb2st | ( | character | stage1, |
| character | vect, | ||
| character | uplo, | ||
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( * ) | hous, | ||
| integer | lhous, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric tridiagonal form T
Download ZHETRD_HB2ST + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric !> tridiagonal form T by a unitary similarity transformation: !> Q**H * A * Q = T. !>
| [in] | STAGE1 | !> STAGE1 is CHARACTER*1 !> = 'N': : to mention that the stage 1 of the reduction !> from dense to band using the zhetrd_he2hb routine !> was not called before this routine to reproduce AB. !> In other term this routine is called as standalone. !> = 'Y': : to mention that the stage 1 of the !> reduction from dense to band using the zhetrd_he2hb !> routine has been called to produce AB (e.g., AB is !> the output of zhetrd_he2hb. !> |
| [in] | VECT | !> VECT is CHARACTER*1 !> = 'N': No need for the Housholder representation, !> and thus LHOUS is of size max(1, 4*N); !> = 'V': the Householder representation is needed to !> either generate or to apply Q later on, !> then LHOUS is to be queried and computed. !> (NOT AVAILABLE IN THIS RELEASE). !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> On exit, the diagonal elements of AB are overwritten by the !> diagonal elements of the tridiagonal matrix T; if KD > 0, the !> elements on the first superdiagonal (if UPLO = 'U') or the !> first subdiagonal (if UPLO = 'L') are overwritten by the !> off-diagonal elements of T; the rest of AB is overwritten by !> values generated during the reduction. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of the tridiagonal matrix T. !> |
| [out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. !> |
| [out] | HOUS | !> HOUS is COMPLEX*16 array, dimension LHOUS, that !> store the Householder representation. !> |
| [in] | LHOUS | !> LHOUS is INTEGER !> The dimension of the array HOUS. LHOUS = MAX(1, dimension) !> If LWORK = -1, or LHOUS=-1, !> then a query is assumed; the routine !> only calculates the optimal size of the HOUS array, returns !> this value as the first entry of the HOUS array, and no error !> message related to LHOUS is issued by XERBLA. !> LHOUS = MAX(1, dimension) where !> dimension = 4*N if VECT='N' !> not available now if VECT='H' !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK = MAX(1, dimension) !> If LWORK = -1, or LHOUS=-1, !> then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS !> where KD is the blocking size of the reduction, !> FACTOPTNB is the blocking used by the QR or LQ !> algorithm, usually FACTOPTNB=128 is a good choice !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> Implemented by Azzam Haidar. !> !> All details are available on technical report, SC11, SC13 papers. !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 228 of file zhetrd_hb2st.F.
| subroutine zhfrk | ( | character | transr, |
| character | uplo, | ||
| character | trans, | ||
| integer | n, | ||
| integer | k, | ||
| double precision | alpha, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision | beta, | ||
| complex*16, dimension( * ) | c ) |
ZHFRK performs a Hermitian rank-k operation for matrix in RFP format.
Download ZHFRK + dependencies [TGZ] [ZIP] [TXT]
!> !> Level 3 BLAS like routine for C in RFP Format. !> !> ZHFRK performs one of the Hermitian rank--k operations !> !> C := alpha*A*A**H + beta*C, !> !> or !> !> C := alpha*A**H*A + beta*C, !> !> where alpha and beta are real scalars, C is an n--by--n Hermitian !> matrix and A is an n--by--k matrix in the first case and a k--by--n !> matrix in the second case. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal Form of RFP A is stored; !> = 'C': The Conjugate-transpose Form of RFP A is stored. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array C is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of C !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of C !> is to be referenced. !> !> Unchanged on exit. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C. !> !> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C. !> !> Unchanged on exit. !> |
| [in] | N | !> N is INTEGER !> On entry, N specifies the order of the matrix C. N must be !> at least zero. !> Unchanged on exit. !> |
| [in] | K | !> K is INTEGER !> On entry with TRANS = 'N' or 'n', K specifies the number !> of columns of the matrix A, and on entry with !> TRANS = 'C' or 'c', K specifies the number of rows of the !> matrix A. K must be at least zero. !> Unchanged on exit. !> |
| [in] | ALPHA | !> ALPHA is DOUBLE PRECISION !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,ka) !> where KA !> is K when TRANS = 'N' or 'n', and is N otherwise. Before !> entry with TRANS = 'N' or 'n', the leading N--by--K part of !> the array A must contain the matrix A, otherwise the leading !> K--by--N part of the array A must contain the matrix A. !> Unchanged on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When TRANS = 'N' or 'n' !> then LDA must be at least max( 1, n ), otherwise LDA must !> be at least max( 1, k ). !> Unchanged on exit. !> |
| [in] | BETA | !> BETA is DOUBLE PRECISION !> On entry, BETA specifies the scalar beta. !> Unchanged on exit. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the matrix A in RFP Format. RFP Format is !> described by TRANSR, UPLO and N. Note that the imaginary !> parts of the diagonal elements need not be set, they are !> assumed to be zero, and on exit they are set to zero. !> |
Definition at line 166 of file zhfrk.f.
| subroutine zhpcon | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| double precision | anorm, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZHPCON
Download ZHPCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPCON estimates the reciprocal of the condition number of a complex !> Hermitian packed matrix A using the factorization A = U*D*U**H or !> A = L*D*L**H computed by ZHPTRF. !> !> An estimate is obtained for norm(inv(A)), and the reciprocal of the !> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHPTRF, stored as a !> packed triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHPTRF. !> |
| [in] | ANORM | !> ANORM is DOUBLE PRECISION !> The 1-norm of the original matrix A. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an !> estimate of the 1-norm of inv(A) computed in this routine. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 117 of file zhpcon.f.
| subroutine zhpgst | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | bp, | ||
| integer | info ) |
ZHPGST
Download ZHPGST + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPGST reduces a complex Hermitian-definite generalized !> eigenproblem to standard form, using packed storage. !> !> If ITYPE = 1, the problem is A*x = lambda*B*x, !> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) !> !> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or !> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. !> !> B must have been previously factorized as U**H*U or L*L**H by ZPPTRF. !>
| [in] | ITYPE | !> ITYPE is INTEGER !> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); !> = 2 or 3: compute U*A*U**H or L**H*A*L. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored and B is factored as !> U**H*U; !> = 'L': Lower triangle of A is stored and B is factored as !> L*L**H. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, if INFO = 0, the transformed matrix, stored in the !> same format as A. !> |
| [in] | BP | !> BP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The triangular factor from the Cholesky factorization of B, !> stored in the same format as A, as returned by ZPPTRF. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 112 of file zhpgst.f.
| subroutine zhprfs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | afp, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZHPRFS
Download ZHPRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian indefinite !> and packed, and provides error bounds and backward error estimates !> for the solution. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> |
| [in] | AFP | !> AFP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The factored form of the matrix A. AFP contains the block !> diagonal matrix D and the multipliers used to obtain the !> factor U or L from the factorization A = U*D*U**H or !> A = L*D*L**H as computed by ZHPTRF, stored as a packed !> triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHPTRF. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZHPTRS. !> On exit, the improved solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> ITMAX is the maximum number of steps of iterative refinement. !>
Definition at line 178 of file zhprfs.f.
| subroutine zhptrd | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( * ) | tau, | ||
| integer | info ) |
ZHPTRD
Download ZHPTRD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to !> real symmetric tridiagonal form T by a unitary similarity !> transformation: Q**H * A * Q = T. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> On exit, if UPLO = 'U', the diagonal and first superdiagonal !> of A are overwritten by the corresponding elements of the !> tridiagonal matrix T, and the elements above the first !> superdiagonal, with the array TAU, represent the unitary !> matrix Q as a product of elementary reflectors; if UPLO !> = 'L', the diagonal and first subdiagonal of A are over- !> written by the corresponding elements of the tridiagonal !> matrix T, and the elements below the first subdiagonal, with !> the array TAU, represent the unitary matrix Q as a product !> of elementary reflectors. See Further Details. !> |
| [out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of the tridiagonal matrix T: !> D(i) = A(i,i). !> |
| [out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> If UPLO = 'U', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(n-1) . . . H(2) H(1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, !> overwriting A(1:i-1,i+1), and tau is stored in TAU(i). !> !> If UPLO = 'L', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(1) H(2) . . . H(n-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, !> overwriting A(i+2:n,i), and tau is stored in TAU(i). !>
Definition at line 150 of file zhptrd.f.
| subroutine zhptrf | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| integer | info ) |
ZHPTRF
Download ZHPTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPTRF computes the factorization of a complex Hermitian packed !> matrix A using the Bunch-Kaufman diagonal pivoting method: !> !> A = U*D*U**H or A = L*D*L**H !> !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is Hermitian and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, the block diagonal matrix D and the multipliers used !> to obtain the factor U or L, stored as a packed triangular !> matrix overwriting A (see below for further details). !> |
| [out] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D. !> If IPIV(k) > 0, then rows and columns k and IPIV(k) were !> interchanged and D(k,k) is a 1-by-1 diagonal block. !> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and !> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) !> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = !> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were !> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, and division by zero will occur if it !> is used to solve a system of equations. !> |
!> !> If UPLO = 'U', then A = U*D*U**H, where !> U = P(n)*U(n)* ... *P(k)U(k)* ..., !> i.e., U is a product of terms P(k)*U(k), where k decreases from n to !> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 !> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as !> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such !> that if the diagonal block D(k) is of order s (s = 1 or 2), then !> !> ( I v 0 ) k-s !> U(k) = ( 0 I 0 ) s !> ( 0 0 I ) n-k !> k-s s n-k !> !> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). !> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), !> and A(k,k), and v overwrites A(1:k-2,k-1:k). !> !> If UPLO = 'L', then A = L*D*L**H, where !> L = P(1)*L(1)* ... *P(k)*L(k)* ..., !> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to !> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 !> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as !> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such !> that if the diagonal block D(k) is of order s (s = 1 or 2), then !> !> ( I 0 0 ) k-1 !> L(k) = ( 0 I 0 ) s !> ( 0 v I ) n-k-s+1 !> k-1 s n-k-s+1 !> !> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). !> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), !> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). !>
Definition at line 158 of file zhptrf.f.
| subroutine zhptri | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZHPTRI
Download ZHPTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix !> A in packed storage using the factorization A = U*D*U**H or !> A = L*D*L**H computed by ZHPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the block diagonal matrix D and the multipliers !> used to obtain the factor U or L as computed by ZHPTRF, !> stored as a packed triangular matrix. !> !> On exit, if INFO = 0, the (Hermitian) inverse of the original !> matrix, stored as a packed triangular matrix. The j-th column !> of inv(A) is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; !> if UPLO = 'L', !> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHPTRF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its !> inverse could not be computed. !> |
Definition at line 108 of file zhptri.f.
| subroutine zhptrs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZHPTRS
Download ZHPTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHPTRS solves a system of linear equations A*X = B with a complex !> Hermitian matrix A stored in packed format using the factorization !> A = U*D*U**H or A = L*D*L**H computed by ZHPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHPTRF, stored as a !> packed triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHPTRF. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 114 of file zhptrs.f.
| subroutine zhsein | ( | character | side, |
| character | eigsrc, | ||
| character | initv, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( ldh, * ) | h, | ||
| integer | ldh, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| integer | mm, | ||
| integer | m, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | ifaill, | ||
| integer, dimension( * ) | ifailr, | ||
| integer | info ) |
ZHSEIN
Download ZHSEIN + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHSEIN uses inverse iteration to find specified right and/or left !> eigenvectors of a complex upper Hessenberg matrix H. !> !> The right eigenvector x and the left eigenvector y of the matrix H !> corresponding to an eigenvalue w are defined by: !> !> H * x = w * x, y**h * H = w * y**h !> !> where y**h denotes the conjugate transpose of the vector y. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !> |
| [in] | EIGSRC | !> EIGSRC is CHARACTER*1 !> Specifies the source of eigenvalues supplied in W: !> = 'Q': the eigenvalues were found using ZHSEQR; thus, if !> H has zero subdiagonal elements, and so is !> block-triangular, then the j-th eigenvalue can be !> assumed to be an eigenvalue of the block containing !> the j-th row/column. This property allows ZHSEIN to !> perform inverse iteration on just one diagonal block. !> = 'N': no assumptions are made on the correspondence !> between eigenvalues and diagonal blocks. In this !> case, ZHSEIN must always perform inverse iteration !> using the whole matrix H. !> |
| [in] | INITV | !> INITV is CHARACTER*1 !> = 'N': no initial vectors are supplied; !> = 'U': user-supplied initial vectors are stored in the arrays !> VL and/or VR. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> Specifies the eigenvectors to be computed. To select the !> eigenvector corresponding to the eigenvalue W(j), !> SELECT(j) must be set to .TRUE.. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix H. N >= 0. !> |
| [in] | H | !> H is COMPLEX*16 array, dimension (LDH,N) !> The upper Hessenberg matrix H. !> If a NaN is detected in H, the routine will return with INFO=-6. !> |
| [in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
| [in,out] | W | !> W is COMPLEX*16 array, dimension (N) !> On entry, the eigenvalues of H. !> On exit, the real parts of W may have been altered since !> close eigenvalues are perturbed slightly in searching for !> independent eigenvectors. !> |
| [in,out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,MM) !> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must !> contain starting vectors for the inverse iteration for the !> left eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'L' or 'B', the left eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VL, in the same order as their eigenvalues. !> If SIDE = 'R', VL is not referenced. !> |
| [in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. !> |
| [in,out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,MM) !> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must !> contain starting vectors for the inverse iteration for the !> right eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'R' or 'B', the right eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VR, in the same order as their eigenvalues. !> If SIDE = 'L', VR is not referenced. !> |
| [in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. !> |
| [in] | MM | !> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !> |
| [out] | M | !> M is INTEGER !> The number of columns in the arrays VL and/or VR required to !> store the eigenvectors (= the number of .TRUE. elements in !> SELECT). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | IFAILL | !> IFAILL is INTEGER array, dimension (MM) !> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left !> eigenvector in the i-th column of VL (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'R', IFAILL is not referenced. !> |
| [out] | IFAILR | !> IFAILR is INTEGER array, dimension (MM) !> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right !> eigenvector in the i-th column of VR (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'L', IFAILR is not referenced. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, i is the number of eigenvectors which !> failed to converge; see IFAILL and IFAILR for further !> details. !> |
!> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x|+|y|. !>
Definition at line 242 of file zhsein.f.
| subroutine zhseqr | ( | character | job, |
| character | compz, | ||
| integer | n, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( ldh, * ) | h, | ||
| integer | ldh, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZHSEQR
Download ZHSEQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHSEQR computes the eigenvalues of a Hessenberg matrix H !> and, optionally, the matrices T and Z from the Schur decomposition !> H = Z T Z**H, where T is an upper triangular matrix (the !> Schur form), and Z is the unitary matrix of Schur vectors. !> !> Optionally Z may be postmultiplied into an input unitary !> matrix Q so that this routine can give the Schur factorization !> of a matrix A which has been reduced to the Hessenberg form H !> by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. !>
| [in] | JOB | !> JOB is CHARACTER*1 !> = 'E': compute eigenvalues only; !> = 'S': compute eigenvalues and the Schur form T. !> |
| [in] | COMPZ | !> COMPZ is CHARACTER*1 !> = 'N': no Schur vectors are computed; !> = 'I': Z is initialized to the unit matrix and the matrix Z !> of Schur vectors of H is returned; !> = 'V': Z must contain an unitary matrix Q on entry, and !> the product Q*Z is returned. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix H. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> It is assumed that H is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to ZGEBAL, and then passed to ZGEHRD !> when the matrix output by ZGEBAL is reduced to Hessenberg !> form. Otherwise ILO and IHI should be set to 1 and N !> respectively. If N > 0, then 1 <= ILO <= IHI <= N. !> If N = 0, then ILO = 1 and IHI = 0. !> |
| [in,out] | H | !> H is COMPLEX*16 array, dimension (LDH,N) !> On entry, the upper Hessenberg matrix H. !> On exit, if INFO = 0 and JOB = 'S', H contains the upper !> triangular matrix T from the Schur decomposition (the !> Schur form). If INFO = 0 and JOB = 'E', the contents of !> H are unspecified on exit. (The output value of H when !> INFO > 0 is given under the description of INFO below.) !> !> Unlike earlier versions of ZHSEQR, this subroutine may !> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 !> or j = IHI+1, IHI+2, ... N. !> |
| [in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (N) !> The computed eigenvalues. If JOB = 'S', the eigenvalues are !> stored in the same order as on the diagonal of the Schur !> form returned in H, with W(i) = H(i,i). !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ,N) !> If COMPZ = 'N', Z is not referenced. !> If COMPZ = 'I', on entry Z need not be set and on exit, !> if INFO = 0, Z contains the unitary matrix Z of the Schur !> vectors of H. If COMPZ = 'V', on entry Z must contain an !> N-by-N matrix Q, which is assumed to be equal to the unit !> matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, !> if INFO = 0, Z contains Q*Z. !> Normally Q is the unitary matrix generated by ZUNGHR !> after the call to ZGEHRD which formed the Hessenberg matrix !> H. (The output value of Z when INFO > 0 is given under !> the description of INFO below.) !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. if COMPZ = 'I' or !> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns an estimate of !> the optimal value for LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N) !> is sufficient and delivers very good and sometimes !> optimal performance. However, LWORK as large as 11*N !> may be required for optimal performance. A workspace !> query is recommended to determine the optimal workspace !> size. !> !> If LWORK = -1, then ZHSEQR does a workspace query. !> In this case, ZHSEQR checks the input parameters and !> estimates the optimal workspace size for the given !> values of N, ILO and IHI. The estimate is returned !> in WORK(1). No error message related to LWORK is !> issued by XERBLA. Neither H nor Z are accessed. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal !> value !> > 0: if INFO = i, ZHSEQR failed to compute all of !> the eigenvalues. Elements 1:ilo-1 and i+1:n of W !> contain those eigenvalues which have been !> successfully computed. (Failures are rare.) !> !> If INFO > 0 and JOB = 'E', then on exit, the !> remaining unconverged eigenvalues are the eigen- !> values of the upper Hessenberg matrix rows and !> columns ILO through INFO of the final, output !> value of H. !> !> If INFO > 0 and JOB = 'S', then on exit !> !> (*) (initial value of H)*U = U*(final value of H) !> !> where U is a unitary matrix. The final !> value of H is upper Hessenberg and triangular in !> rows and columns INFO+1 through IHI. !> !> If INFO > 0 and COMPZ = 'V', then on exit !> !> (final value of Z) = (initial value of Z)*U !> !> where U is the unitary matrix in (*) (regard- !> less of the value of JOB.) !> !> If INFO > 0 and COMPZ = 'I', then on exit !> (final value of Z) = U !> where U is the unitary matrix in (*) (regard- !> less of the value of JOB.) !> !> If INFO > 0 and COMPZ = 'N', then Z is not !> accessed. !> |
!> !> Default values supplied by !> ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). !> It is suggested that these defaults be adjusted in order !> to attain best performance in each particular !> computational environment. !> !> ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point. !> Default: 75. (Must be at least 11.) !> !> ISPEC=13: Recommended deflation window size. !> This depends on ILO, IHI and NS. NS is the !> number of simultaneous shifts returned !> by ILAENV(ISPEC=15). (See ISPEC=15 below.) !> The default for (IHI-ILO+1) <= 500 is NS. !> The default for (IHI-ILO+1) > 500 is 3*NS/2. !> !> ISPEC=14: Nibble crossover point. (See IPARMQ for !> details.) Default: 14% of deflation window !> size. !> !> ISPEC=15: Number of simultaneous shifts in a multishift !> QR iteration. !> !> If IHI-ILO+1 is ... !> !> greater than ...but less ... the !> or equal to ... than default is !> !> 1 30 NS = 2(+) !> 30 60 NS = 4(+) !> 60 150 NS = 10(+) !> 150 590 NS = ** !> 590 3000 NS = 64 !> 3000 6000 NS = 128 !> 6000 infinity NS = 256 !> !> (+) By default some or all matrices of this order !> are passed to the implicit double shift routine !> ZLAHQR and this parameter is ignored. See !> ISPEC=12 above and comments in IPARMQ for !> details. !> !> (**) The asterisks (**) indicate an ad-hoc !> function of N increasing from 10 to 64. !> !> ISPEC=16: Select structured matrix multiply. !> If the number of simultaneous shifts (specified !> by ISPEC=15) is less than 14, then the default !> for ISPEC=16 is 0. Otherwise the default for !> ISPEC=16 is 2. !>
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.
Definition at line 297 of file zhseqr.f.
| subroutine zla_lin_berr | ( | integer | n, |
| integer | nz, | ||
| integer | nrhs, | ||
| complex*16, dimension( n, nrhs ) | res, | ||
| double precision, dimension( n, nrhs ) | ayb, | ||
| double precision, dimension( nrhs ) | berr ) |
ZLA_LIN_BERR computes a component-wise relative backward error.
Download ZLA_LIN_BERR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLA_LIN_BERR computes componentwise relative backward error from !> the formula !> max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) !> where abs(Z) is the componentwise absolute value of the matrix !> or vector Z. !>
| [in] | N | !> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !> |
| [in] | NZ | !> NZ is INTEGER !> We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to !> guard against spuriously zero residuals. Default value is N. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices AYB, RES, and BERR. NRHS >= 0. !> |
| [in] | RES | !> RES is COMPLEX*16 array, dimension (N,NRHS) !> The residual matrix, i.e., the matrix R in the relative backward !> error formula above. !> |
| [in] | AYB | !> AYB is DOUBLE PRECISION array, dimension (N, NRHS) !> The denominator in the relative backward error formula above, i.e., !> the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B !> are from iterative refinement (see zla_gerfsx_extended.f). !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error from the formula above. !> |
Definition at line 100 of file zla_lin_berr.f.
| subroutine zla_wwaddw | ( | integer | n, |
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( * ) | y, | ||
| complex*16, dimension( * ) | w ) |
ZLA_WWADDW adds a vector into a doubled-single vector.
Download ZLA_WWADDW + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLA_WWADDW adds a vector W into a doubled-single vector (X, Y). !> !> This works for all extant IBM's hex and binary floating point !> arithmetic, but not for decimal. !>
| [in] | N | !> N is INTEGER !> The length of vectors X, Y, and W. !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (N) !> The first part of the doubled-single accumulation vector. !> |
| [in,out] | Y | !> Y is COMPLEX*16 array, dimension (N) !> The second part of the doubled-single accumulation vector. !> |
| [in] | W | !> W is COMPLEX*16 array, dimension (N) !> The vector to be added. !> |
Definition at line 80 of file zla_wwaddw.f.
| subroutine zlaed0 | ( | integer | qsiz, |
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldqs, * ) | qstore, | ||
| integer | ldqs, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
Download ZLAED0 + dependencies [TGZ] [ZIP] [TXT]
!> !> Using the divide and conquer method, ZLAED0 computes all eigenvalues !> of a symmetric tridiagonal matrix which is one diagonal block of !> those from reducing a dense or band Hermitian matrix and !> corresponding eigenvectors of the dense or band matrix. !>
| [in] | QSIZ | !> QSIZ is INTEGER !> The dimension of the unitary matrix used to reduce !> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. !> |
| [in] | N | !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix. N >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix. !> On exit, the eigenvalues in ascending order. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the off-diagonal elements of the tridiagonal matrix. !> On exit, E has been destroyed. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, Q must contain an QSIZ x N matrix whose columns !> unitarily orthonormal. It is a part of the unitary matrix !> that reduces the full dense Hermitian matrix to a !> (reducible) symmetric tridiagonal matrix. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | IWORK | !> IWORK is INTEGER array, !> the dimension of IWORK must be at least !> 6 + 6*N + 5*N*lg N !> ( lg( N ) = smallest integer k !> such that 2^k >= N ) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, !> dimension (1 + 3*N + 2*N*lg N + 3*N**2) !> ( lg( N ) = smallest integer k !> such that 2^k >= N ) !> |
| [out] | QSTORE | !> QSTORE is COMPLEX*16 array, dimension (LDQS, N) !> Used to store parts of !> the eigenvector matrix when the updating matrix multiplies !> take place. !> |
| [in] | LDQS | !> LDQS is INTEGER !> The leading dimension of the array QSTORE. !> LDQS >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1). !> |
Definition at line 143 of file zlaed0.f.
| subroutine zlaed7 | ( | integer | n, |
| integer | cutpnt, | ||
| integer | qsiz, | ||
| integer | tlvls, | ||
| integer | curlvl, | ||
| integer | curpbm, | ||
| double precision, dimension( * ) | d, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| double precision | rho, | ||
| integer, dimension( * ) | indxq, | ||
| double precision, dimension( * ) | qstore, | ||
| integer, dimension( * ) | qptr, | ||
| integer, dimension( * ) | prmptr, | ||
| integer, dimension( * ) | perm, | ||
| integer, dimension( * ) | givptr, | ||
| integer, dimension( 2, * ) | givcol, | ||
| double precision, dimension( 2, * ) | givnum, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZLAED7 used by ZSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
Download ZLAED7 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLAED7 computes the updated eigensystem of a diagonal !> matrix after modification by a rank-one symmetric matrix. This !> routine is used only for the eigenproblem which requires all !> eigenvalues and optionally eigenvectors of a dense or banded !> Hermitian matrix that has been reduced to tridiagonal form. !> !> T = Q(in) ( D(in) + RHO * Z*Z**H ) Q**H(in) = Q(out) * D(out) * Q**H(out) !> !> where Z = Q**Hu, u is a vector of length N with ones in the !> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. !> !> The eigenvectors of the original matrix are stored in Q, and the !> eigenvalues are in D. The algorithm consists of three stages: !> !> The first stage consists of deflating the size of the problem !> when there are multiple eigenvalues or if there is a zero in !> the Z vector. For each such occurrence the dimension of the !> secular equation problem is reduced by one. This stage is !> performed by the routine DLAED2. !> !> The second stage consists of calculating the updated !> eigenvalues. This is done by finding the roots of the secular !> equation via the routine DLAED4 (as called by SLAED3). !> This routine also calculates the eigenvectors of the current !> problem. !> !> The final stage consists of computing the updated eigenvectors !> directly using the updated eigenvalues. The eigenvectors for !> the current problem are multiplied with the eigenvectors from !> the overall problem. !>
| [in] | N | !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix. N >= 0. !> |
| [in] | CUTPNT | !> CUTPNT is INTEGER !> Contains the location of the last eigenvalue in the leading !> sub-matrix. min(1,N) <= CUTPNT <= N. !> |
| [in] | QSIZ | !> QSIZ is INTEGER !> The dimension of the unitary matrix used to reduce !> the full matrix to tridiagonal form. QSIZ >= N. !> |
| [in] | TLVLS | !> TLVLS is INTEGER !> The total number of merging levels in the overall divide and !> conquer tree. !> |
| [in] | CURLVL | !> CURLVL is INTEGER !> The current level in the overall merge routine, !> 0 <= curlvl <= tlvls. !> |
| [in] | CURPBM | !> CURPBM is INTEGER !> The current problem in the current level in the overall !> merge routine (counting from upper left to lower right). !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the eigenvalues of the rank-1-perturbed matrix. !> On exit, the eigenvalues of the repaired matrix. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, the eigenvectors of the rank-1-perturbed matrix. !> On exit, the eigenvectors of the repaired tridiagonal matrix. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [in] | RHO | !> RHO is DOUBLE PRECISION !> Contains the subdiagonal element used to create the rank-1 !> modification. !> |
| [out] | INDXQ | !> INDXQ is INTEGER array, dimension (N) !> This contains the permutation which will reintegrate the !> subproblem just solved back into sorted order, !> ie. D( INDXQ( I = 1, N ) ) will be in ascending order. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (4*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, !> dimension (3*N+2*QSIZ*N) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (QSIZ*N) !> |
| [in,out] | QSTORE | !> QSTORE is DOUBLE PRECISION array, dimension (N**2+1) !> Stores eigenvectors of submatrices encountered during !> divide and conquer, packed together. QPTR points to !> beginning of the submatrices. !> |
| [in,out] | QPTR | !> QPTR is INTEGER array, dimension (N+2) !> List of indices pointing to beginning of submatrices stored !> in QSTORE. The submatrices are numbered starting at the !> bottom left of the divide and conquer tree, from left to !> right and bottom to top. !> |
| [in] | PRMPTR | !> PRMPTR is INTEGER array, dimension (N lg N) !> Contains a list of pointers which indicate where in PERM a !> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) !> indicates the size of the permutation and also the size of !> the full, non-deflated problem. !> |
| [in] | PERM | !> PERM is INTEGER array, dimension (N lg N) !> Contains the permutations (from deflation and sorting) to be !> applied to each eigenblock. !> |
| [in] | GIVPTR | !> GIVPTR is INTEGER array, dimension (N lg N) !> Contains a list of pointers which indicate where in GIVCOL a !> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) !> indicates the number of Givens rotations. !> |
| [in] | GIVCOL | !> GIVCOL is INTEGER array, dimension (2, N lg N) !> Each pair of numbers indicates a pair of columns to take place !> in a Givens rotation. !> |
| [in] | GIVNUM | !> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N) !> Each number indicates the S value to be used in the !> corresponding Givens rotation. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = 1, an eigenvalue did not converge !> |
Definition at line 245 of file zlaed7.f.
| subroutine zlaed8 | ( | integer | k, |
| integer | n, | ||
| integer | qsiz, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| double precision, dimension( * ) | d, | ||
| double precision | rho, | ||
| integer | cutpnt, | ||
| double precision, dimension( * ) | z, | ||
| double precision, dimension( * ) | dlamda, | ||
| complex*16, dimension( ldq2, * ) | q2, | ||
| integer | ldq2, | ||
| double precision, dimension( * ) | w, | ||
| integer, dimension( * ) | indxp, | ||
| integer, dimension( * ) | indx, | ||
| integer, dimension( * ) | indxq, | ||
| integer, dimension( * ) | perm, | ||
| integer | givptr, | ||
| integer, dimension( 2, * ) | givcol, | ||
| double precision, dimension( 2, * ) | givnum, | ||
| integer | info ) |
ZLAED8 used by ZSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
Download ZLAED8 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLAED8 merges the two sets of eigenvalues together into a single !> sorted set. Then it tries to deflate the size of the problem. !> There are two ways in which deflation can occur: when two or more !> eigenvalues are close together or if there is a tiny element in the !> Z vector. For each such occurrence the order of the related secular !> equation problem is reduced by one. !>
| [out] | K | !> K is INTEGER !> Contains the number of non-deflated eigenvalues. !> This is the order of the related secular equation. !> |
| [in] | N | !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix. N >= 0. !> |
| [in] | QSIZ | !> QSIZ is INTEGER !> The dimension of the unitary matrix used to reduce !> the dense or band matrix to tridiagonal form. !> QSIZ >= N if ICOMPQ = 1. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, Q contains the eigenvectors of the partially solved !> system which has been previously updated in matrix !> multiplies with other partially solved eigensystems. !> On exit, Q contains the trailing (N-K) updated eigenvectors !> (those which were deflated) in its last N-K columns. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max( 1, N ). !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, D contains the eigenvalues of the two submatrices to !> be combined. On exit, D contains the trailing (N-K) updated !> eigenvalues (those which were deflated) sorted into increasing !> order. !> |
| [in,out] | RHO | !> RHO is DOUBLE PRECISION !> Contains the off diagonal element associated with the rank-1 !> cut which originally split the two submatrices which are now !> being recombined. RHO is modified during the computation to !> the value required by DLAED3. !> |
| [in] | CUTPNT | !> CUTPNT is INTEGER !> Contains the location of the last eigenvalue in the leading !> sub-matrix. MIN(1,N) <= CUTPNT <= N. !> |
| [in] | Z | !> Z is DOUBLE PRECISION array, dimension (N) !> On input this vector contains the updating vector (the last !> row of the first sub-eigenvector matrix and the first row of !> the second sub-eigenvector matrix). The contents of Z are !> destroyed during the updating process. !> |
| [out] | DLAMDA | !> DLAMDA is DOUBLE PRECISION array, dimension (N) !> Contains a copy of the first K eigenvalues which will be used !> by DLAED3 to form the secular equation. !> |
| [out] | Q2 | !> Q2 is COMPLEX*16 array, dimension (LDQ2,N) !> If ICOMPQ = 0, Q2 is not referenced. Otherwise, !> Contains a copy of the first K eigenvectors which will be used !> by DLAED7 in a matrix multiply (DGEMM) to update the new !> eigenvectors. !> |
| [in] | LDQ2 | !> LDQ2 is INTEGER !> The leading dimension of the array Q2. LDQ2 >= max( 1, N ). !> |
| [out] | W | !> W is DOUBLE PRECISION array, dimension (N) !> This will hold the first k values of the final !> deflation-altered z-vector and will be passed to DLAED3. !> |
| [out] | INDXP | !> INDXP is INTEGER array, dimension (N) !> This will contain the permutation used to place deflated !> values of D at the end of the array. On output INDXP(1:K) !> points to the nondeflated D-values and INDXP(K+1:N) !> points to the deflated eigenvalues. !> |
| [out] | INDX | !> INDX is INTEGER array, dimension (N) !> This will contain the permutation used to sort the contents of !> D into ascending order. !> |
| [in] | INDXQ | !> INDXQ is INTEGER array, dimension (N) !> This contains the permutation which separately sorts the two !> sub-problems in D into ascending order. Note that elements in !> the second half of this permutation must first have CUTPNT !> added to their values in order to be accurate. !> |
| [out] | PERM | !> PERM is INTEGER array, dimension (N) !> Contains the permutations (from deflation and sorting) to be !> applied to each eigenblock. !> |
| [out] | GIVPTR | !> GIVPTR is INTEGER !> Contains the number of Givens rotations which took place in !> this subproblem. !> |
| [out] | GIVCOL | !> GIVCOL is INTEGER array, dimension (2, N) !> Each pair of numbers indicates a pair of columns to take place !> in a Givens rotation. !> |
| [out] | GIVNUM | !> GIVNUM is DOUBLE PRECISION array, dimension (2, N) !> Each number indicates the S value to be used in the !> corresponding Givens rotation. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 225 of file zlaed8.f.
| subroutine zlals0 | ( | integer | icompq, |
| integer | nl, | ||
| integer | nr, | ||
| integer | sqre, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldbx, * ) | bx, | ||
| integer | ldbx, | ||
| integer, dimension( * ) | perm, | ||
| integer | givptr, | ||
| integer, dimension( ldgcol, * ) | givcol, | ||
| integer | ldgcol, | ||
| double precision, dimension( ldgnum, * ) | givnum, | ||
| integer | ldgnum, | ||
| double precision, dimension( ldgnum, * ) | poles, | ||
| double precision, dimension( * ) | difl, | ||
| double precision, dimension( ldgnum, * ) | difr, | ||
| double precision, dimension( * ) | z, | ||
| integer | k, | ||
| double precision | c, | ||
| double precision | s, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
Download ZLALS0 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLALS0 applies back the multiplying factors of either the left or the !> right singular vector matrix of a diagonal matrix appended by a row !> to the right hand side matrix B in solving the least squares problem !> using the divide-and-conquer SVD approach. !> !> For the left singular vector matrix, three types of orthogonal !> matrices are involved: !> !> (1L) Givens rotations: the number of such rotations is GIVPTR; the !> pairs of columns/rows they were applied to are stored in GIVCOL; !> and the C- and S-values of these rotations are stored in GIVNUM. !> !> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first !> row, and for J=2:N, PERM(J)-th row of B is to be moved to the !> J-th row. !> !> (3L) The left singular vector matrix of the remaining matrix. !> !> For the right singular vector matrix, four types of orthogonal !> matrices are involved: !> !> (1R) The right singular vector matrix of the remaining matrix. !> !> (2R) If SQRE = 1, one extra Givens rotation to generate the right !> null space. !> !> (3R) The inverse transformation of (2L). !> !> (4R) The inverse transformation of (1L). !>
| [in] | ICOMPQ | !> ICOMPQ is INTEGER !> Specifies whether singular vectors are to be computed in !> factored form: !> = 0: Left singular vector matrix. !> = 1: Right singular vector matrix. !> |
| [in] | NL | !> NL is INTEGER !> The row dimension of the upper block. NL >= 1. !> |
| [in] | NR | !> NR is INTEGER !> The row dimension of the lower block. NR >= 1. !> |
| [in] | SQRE | !> SQRE is INTEGER !> = 0: the lower block is an NR-by-NR square matrix. !> = 1: the lower block is an NR-by-(NR+1) rectangular matrix. !> !> The bidiagonal matrix has row dimension N = NL + NR + 1, !> and column dimension M = N + SQRE. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns of B and BX. NRHS must be at least 1. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension ( LDB, NRHS ) !> On input, B contains the right hand sides of the least !> squares problem in rows 1 through M. On output, B contains !> the solution X in rows 1 through N. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. LDB must be at least !> max(1,MAX( M, N ) ). !> |
| [out] | BX | !> BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) !> |
| [in] | LDBX | !> LDBX is INTEGER !> The leading dimension of BX. !> |
| [in] | PERM | !> PERM is INTEGER array, dimension ( N ) !> The permutations (from deflation and sorting) applied !> to the two blocks. !> |
| [in] | GIVPTR | !> GIVPTR is INTEGER !> The number of Givens rotations which took place in this !> subproblem. !> |
| [in] | GIVCOL | !> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) !> Each pair of numbers indicates a pair of rows/columns !> involved in a Givens rotation. !> |
| [in] | LDGCOL | !> LDGCOL is INTEGER !> The leading dimension of GIVCOL, must be at least N. !> |
| [in] | GIVNUM | !> GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) !> Each number indicates the C or S value used in the !> corresponding Givens rotation. !> |
| [in] | LDGNUM | !> LDGNUM is INTEGER !> The leading dimension of arrays DIFR, POLES and !> GIVNUM, must be at least K. !> |
| [in] | POLES | !> POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) !> On entry, POLES(1:K, 1) contains the new singular !> values obtained from solving the secular equation, and !> POLES(1:K, 2) is an array containing the poles in the secular !> equation. !> |
| [in] | DIFL | !> DIFL is DOUBLE PRECISION array, dimension ( K ). !> On entry, DIFL(I) is the distance between I-th updated !> (undeflated) singular value and the I-th (undeflated) old !> singular value. !> |
| [in] | DIFR | !> DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). !> On entry, DIFR(I, 1) contains the distances between I-th !> updated (undeflated) singular value and the I+1-th !> (undeflated) old singular value. And DIFR(I, 2) is the !> normalizing factor for the I-th right singular vector. !> |
| [in] | Z | !> Z is DOUBLE PRECISION array, dimension ( K ) !> Contain the components of the deflation-adjusted updating row !> vector. !> |
| [in] | K | !> K is INTEGER !> Contains the dimension of the non-deflated matrix, !> This is the order of the related secular equation. 1 <= K <=N. !> |
| [in] | C | !> C is DOUBLE PRECISION !> C contains garbage if SQRE =0 and the C-value of a Givens !> rotation related to the right null space if SQRE = 1. !> |
| [in] | S | !> S is DOUBLE PRECISION !> S contains garbage if SQRE =0 and the S-value of a Givens !> rotation related to the right null space if SQRE = 1. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension !> ( K*(1+NRHS) + 2*NRHS ) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 267 of file zlals0.f.
| subroutine zlalsa | ( | integer | icompq, |
| integer | smlsiz, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldbx, * ) | bx, | ||
| integer | ldbx, | ||
| double precision, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| double precision, dimension( ldu, * ) | vt, | ||
| integer, dimension( * ) | k, | ||
| double precision, dimension( ldu, * ) | difl, | ||
| double precision, dimension( ldu, * ) | difr, | ||
| double precision, dimension( ldu, * ) | z, | ||
| double precision, dimension( ldu, * ) | poles, | ||
| integer, dimension( * ) | givptr, | ||
| integer, dimension( ldgcol, * ) | givcol, | ||
| integer | ldgcol, | ||
| integer, dimension( ldgcol, * ) | perm, | ||
| double precision, dimension( ldu, * ) | givnum, | ||
| double precision, dimension( * ) | c, | ||
| double precision, dimension( * ) | s, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
Download ZLALSA + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLALSA is an itermediate step in solving the least squares problem !> by computing the SVD of the coefficient matrix in compact form (The !> singular vectors are computed as products of simple orthorgonal !> matrices.). !> !> If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector !> matrix of an upper bidiagonal matrix to the right hand side; and if !> ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the !> right hand side. The singular vector matrices were generated in !> compact form by ZLALSA. !>
| [in] | ICOMPQ | !> ICOMPQ is INTEGER !> Specifies whether the left or the right singular vector !> matrix is involved. !> = 0: Left singular vector matrix !> = 1: Right singular vector matrix !> |
| [in] | SMLSIZ | !> SMLSIZ is INTEGER !> The maximum size of the subproblems at the bottom of the !> computation tree. !> |
| [in] | N | !> N is INTEGER !> The row and column dimensions of the upper bidiagonal matrix. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns of B and BX. NRHS must be at least 1. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension ( LDB, NRHS ) !> On input, B contains the right hand sides of the least !> squares problem in rows 1 through M. !> On output, B contains the solution X in rows 1 through N. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B in the calling subprogram. !> LDB must be at least max(1,MAX( M, N ) ). !> |
| [out] | BX | !> BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) !> On exit, the result of applying the left or right singular !> vector matrix to B. !> |
| [in] | LDBX | !> LDBX is INTEGER !> The leading dimension of BX. !> |
| [in] | U | !> U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). !> On entry, U contains the left singular vector matrices of all !> subproblems at the bottom level. !> |
| [in] | LDU | !> LDU is INTEGER, LDU = > N. !> The leading dimension of arrays U, VT, DIFL, DIFR, !> POLES, GIVNUM, and Z. !> |
| [in] | VT | !> VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). !> On entry, VT**H contains the right singular vector matrices of !> all subproblems at the bottom level. !> |
| [in] | K | !> K is INTEGER array, dimension ( N ). !> |
| [in] | DIFL | !> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). !> where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. !> |
| [in] | DIFR | !> DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). !> On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record !> distances between singular values on the I-th level and !> singular values on the (I -1)-th level, and DIFR(*, 2 * I) !> record the normalizing factors of the right singular vectors !> matrices of subproblems on I-th level. !> |
| [in] | Z | !> Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). !> On entry, Z(1, I) contains the components of the deflation- !> adjusted updating row vector for subproblems on the I-th !> level. !> |
| [in] | POLES | !> POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). !> On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old !> singular values involved in the secular equations on the I-th !> level. !> |
| [in] | GIVPTR | !> GIVPTR is INTEGER array, dimension ( N ). !> On entry, GIVPTR( I ) records the number of Givens !> rotations performed on the I-th problem on the computation !> tree. !> |
| [in] | GIVCOL | !> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). !> On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the !> locations of Givens rotations performed on the I-th level on !> the computation tree. !> |
| [in] | LDGCOL | !> LDGCOL is INTEGER, LDGCOL = > N. !> The leading dimension of arrays GIVCOL and PERM. !> |
| [in] | PERM | !> PERM is INTEGER array, dimension ( LDGCOL, NLVL ). !> On entry, PERM(*, I) records permutations done on the I-th !> level of the computation tree. !> |
| [in] | GIVNUM | !> GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). !> On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- !> values of Givens rotations performed on the I-th level on the !> computation tree. !> |
| [in] | C | !> C is DOUBLE PRECISION array, dimension ( N ). !> On entry, if the I-th subproblem is not square, !> C( I ) contains the C-value of a Givens rotation related to !> the right null space of the I-th subproblem. !> |
| [in] | S | !> S is DOUBLE PRECISION array, dimension ( N ). !> On entry, if the I-th subproblem is not square, !> S( I ) contains the S-value of a Givens rotation related to !> the right null space of the I-th subproblem. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension at least !> MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ). !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (3*N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 263 of file zlalsa.f.
| subroutine zlalsd | ( | character | uplo, |
| integer | smlsiz, | ||
| integer | n, | ||
| integer | nrhs, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision | rcond, | ||
| integer | rank, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZLALSD uses the singular value decomposition of A to solve the least squares problem.
Download ZLALSD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLALSD uses the singular value decomposition of A to solve the least !> squares problem of finding X to minimize the Euclidean norm of each !> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B !> are N-by-NRHS. The solution X overwrites B. !> !> The singular values of A smaller than RCOND times the largest !> singular value are treated as zero in solving the least squares !> problem; in this case a minimum norm solution is returned. !> The actual singular values are returned in D in ascending order. !> !> This code makes very mild assumptions about floating point !> arithmetic. It will work on machines with a guard digit in !> add/subtract, or on those binary machines without guard digits !> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. !> It could conceivably fail on hexadecimal or decimal machines !> without guard digits, but we know of none. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': D and E define an upper bidiagonal matrix. !> = 'L': D and E define a lower bidiagonal matrix. !> |
| [in] | SMLSIZ | !> SMLSIZ is INTEGER !> The maximum size of the subproblems at the bottom of the !> computation tree. !> |
| [in] | N | !> N is INTEGER !> The dimension of the bidiagonal matrix. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns of B. NRHS must be at least 1. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry D contains the main diagonal of the bidiagonal !> matrix. On exit, if INFO = 0, D contains its singular values. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> Contains the super-diagonal entries of the bidiagonal matrix. !> On exit, E has been destroyed. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On input, B contains the right hand sides of the least !> squares problem. On output, B contains the solution X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B in the calling subprogram. !> LDB must be at least max(1,N). !> |
| [in] | RCOND | !> RCOND is DOUBLE PRECISION !> The singular values of A less than or equal to RCOND times !> the largest singular value are treated as zero in solving !> the least squares problem. If RCOND is negative, !> machine precision is used instead. !> For example, if diag(S)*X=B were the least squares problem, !> where diag(S) is a diagonal matrix of singular values, the !> solution would be X(i) = B(i) / S(i) if S(i) is greater than !> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to !> RCOND*max(S). !> |
| [out] | RANK | !> RANK is INTEGER !> The number of singular values of A greater than RCOND times !> the largest singular value. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N * NRHS) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension at least !> (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + !> MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), !> where !> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension at least !> (3*N*NLVL + 11*N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: The algorithm failed to compute a singular value while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through MOD(INFO,N+1). !> |
Definition at line 185 of file zlalsd.f.
| double precision function zlanhf | ( | character | norm, |
| character | transr, | ||
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | a, | ||
| double precision, dimension( 0: * ) | work ) |
ZLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.
Download ZLANHF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLANHF returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex Hermitian matrix A in RFP format. !>
!> !> ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a matrix norm. !>
| [in] | NORM | !> NORM is CHARACTER !> Specifies the value to be returned in ZLANHF as described !> above. !> |
| [in] | TRANSR | !> TRANSR is CHARACTER !> Specifies whether the RFP format of A is normal or !> conjugate-transposed format. !> = 'N': RFP format is Normal !> = 'C': RFP format is Conjugate-transposed !> |
| [in] | UPLO | !> UPLO is CHARACTER !> On entry, UPLO specifies whether the RFP matrix A came from !> an upper or lower triangular matrix as follows: !> !> UPLO = 'U' or 'u' RFP A came from an upper triangular !> matrix !> !> UPLO = 'L' or 'l' RFP A came from a lower triangular !> matrix !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHF is !> set to zero. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> On entry, the matrix A in RFP Format. !> RFP Format is described by TRANSR, UPLO and N as follows: !> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; !> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If !> TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A !> as defined when TRANSR = 'N'. The contents of RFP A are !> defined by UPLO as follows: If UPLO = 'U' the RFP A !> contains the ( N*(N+1)/2 ) elements of upper packed A !> either in normal or conjugate-transpose Format. If !> UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements !> of lower packed A either in normal or conjugate-transpose !> Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When !> TRANSR is 'N' the LDA is N+1 when N is even and is N when !> is odd. See the Note below for more details. !> Unchanged on exit. !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (LWORK), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced. !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 245 of file zlanhf.f.
| subroutine zlarscl2 | ( | integer | m, |
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx ) |
ZLARSCL2 performs reciprocal diagonal scaling on a vector.
Download ZLARSCL2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLARSCL2 performs a reciprocal diagonal scaling on an vector: !> x <-- inv(D) * x !> where the DOUBLE PRECISION diagonal matrix D is stored as a vector. !> !> Eventually to be replaced by BLAS_zge_diag_scale in the new BLAS !> standard. !>
| [in] | M | !> M is INTEGER !> The number of rows of D and X. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of X. N >= 0. !> |
| [in] | D | !> D is DOUBLE PRECISION array, length M !> Diagonal matrix D, stored as a vector of length M. !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,N) !> On entry, the vector X to be scaled by D. !> On exit, the scaled vector. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the vector X. LDX >= M. !> |
Definition at line 90 of file zlarscl2.f.
| subroutine zlarz | ( | character | side, |
| integer | m, | ||
| integer | n, | ||
| integer | l, | ||
| complex*16, dimension( * ) | v, | ||
| integer | incv, | ||
| complex*16 | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work ) |
ZLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
Download ZLARZ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLARZ applies a complex elementary reflector H to a complex !> M-by-N matrix C, from either the left or the right. H is represented !> in the form !> !> H = I - tau * v * v**H !> !> where tau is a complex scalar and v is a complex vector. !> !> If tau = 0, then H is taken to be the unit matrix. !> !> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead !> tau. !> !> H is a product of k elementary reflectors as returned by ZTZRZF. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': form H * C !> = 'R': form C * H !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. !> |
| [in] | L | !> L is INTEGER !> The number of entries of the vector V containing !> the meaningful part of the Householder vectors. !> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (1+(L-1)*abs(INCV)) !> The vector v in the representation of H as returned by !> ZTZRZF. V is not used if TAU = 0. !> |
| [in] | INCV | !> INCV is INTEGER !> The increment between elements of v. INCV <> 0. !> |
| [in] | TAU | !> TAU is COMPLEX*16 !> The value tau in the representation of H. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by the matrix H * C if SIDE = 'L', !> or C * H if SIDE = 'R'. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L' !> or (M) if SIDE = 'R' !> |
!>
Definition at line 146 of file zlarz.f.
| subroutine zlarzb | ( | character | side, |
| character | trans, | ||
| character | direct, | ||
| character | storev, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( ldwork, * ) | work, | ||
| integer | ldwork ) |
ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.
Download ZLARZB + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLARZB applies a complex block reflector H or its transpose H**H !> to a complex distributed M-by-N C from the left or the right. !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply H or H**H from the Left !> = 'R': apply H or H**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply H (No transpose) !> = 'C': apply H**H (Conjugate transpose) !> |
| [in] | DIRECT | !> DIRECT is CHARACTER*1 !> Indicates how H is formed from a product of elementary !> reflectors !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !> |
| [in] | STOREV | !> STOREV is CHARACTER*1 !> Indicates how the vectors which define the elementary !> reflectors are stored: !> = 'C': Columnwise (not supported yet) !> = 'R': Rowwise !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. !> |
| [in] | K | !> K is INTEGER !> The order of the matrix T (= the number of elementary !> reflectors whose product defines the block reflector). !> |
| [in] | L | !> L is INTEGER !> The number of columns of the matrix V containing the !> meaningful part of the Householder reflectors. !> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV,NV). !> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K. !> |
| [in] | T | !> T is COMPLEX*16 array, dimension (LDT,K) !> The triangular K-by-K matrix T in the representation of the !> block reflector. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LDWORK,K) !> |
| [in] | LDWORK | !> LDWORK is INTEGER !> The leading dimension of the array WORK. !> If SIDE = 'L', LDWORK >= max(1,N); !> if SIDE = 'R', LDWORK >= max(1,M). !> |
!>
Definition at line 181 of file zlarzb.f.
| subroutine zlarzt | ( | character | direct, |
| character | storev, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt ) |
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Download ZLARZT + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLARZT forms the triangular factor T of a complex block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
| [in] | DIRECT | !> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !> |
| [in] | STOREV | !> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !> |
| [in] | N | !> N is INTEGER !> The order of the block reflector H. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !> |
| [in,out] | V | !> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !> |
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit. The rest of the !> array is not used. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) !> ( v1 v2 v3 ) !> . . . !> . . . !> 1 . . !> 1 . !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \ !> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) !> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) !> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) !> . . . !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !>
Definition at line 184 of file zlarzt.f.
| subroutine zlascl2 | ( | integer | m, |
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx ) |
ZLASCL2 performs diagonal scaling on a vector.
Download ZLASCL2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLASCL2 performs a diagonal scaling on a vector: !> x <-- D * x !> where the DOUBLE PRECISION diagonal matrix D is stored as a vector. !> !> Eventually to be replaced by BLAS_zge_diag_scale in the new BLAS !> standard. !>
| [in] | M | !> M is INTEGER !> The number of rows of D and X. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of X. N >= 0. !> |
| [in] | D | !> D is DOUBLE PRECISION array, length M !> Diagonal matrix D, stored as a vector of length M. !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,N) !> On entry, the vector X to be scaled by D. !> On exit, the scaled vector. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the vector X. LDX >= M. !> |
Definition at line 90 of file zlascl2.f.
| subroutine zlatrz | ( | integer | m, |
| integer | n, | ||
| integer | l, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work ) |
ZLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
Download ZLATRZ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix !> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means !> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary !> matrix and, R and A1 are M-by-M upper triangular matrices. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
| [in] | L | !> L is INTEGER !> The number of columns of the matrix A containing the !> meaningful part of the Householder vectors. N-M >= L >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements N-L+1 to !> N of the first M rows of A, with the array TAU, represent the !> unitary matrix Z as a product of M elementary reflectors. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
!> !> The factorization is obtained by Householder's method. The kth !> transformation matrix, Z( k ), which is used to introduce zeros into !> the ( m - k + 1 )th row of A, is given in the form !> !> Z( k ) = ( I 0 ), !> ( 0 T( k ) ) !> !> where !> !> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), !> ( 0 ) !> ( z( k ) ) !> !> tau is a scalar and z( k ) is an l element vector. tau and z( k ) !> are chosen to annihilate the elements of the kth row of A2. !> !> The scalar tau is returned in the kth element of TAU and the vector !> u( k ) in the kth row of A2, such that the elements of z( k ) are !> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in !> the upper triangular part of A1. !> !> Z is given by !> !> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). !>
Definition at line 139 of file zlatrz.f.
| subroutine zlatzm | ( | character | side, |
| integer | m, | ||
| integer | n, | ||
| complex*16, dimension( * ) | v, | ||
| integer | incv, | ||
| complex*16 | tau, | ||
| complex*16, dimension( ldc, * ) | c1, | ||
| complex*16, dimension( ldc, * ) | c2, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work ) |
ZLATZM
Download ZLATZM + dependencies [TGZ] [ZIP] [TXT]
!> !> This routine is deprecated and has been replaced by routine ZUNMRZ. !> !> ZLATZM applies a Householder matrix generated by ZTZRQF to a matrix. !> !> Let P = I - tau*u*u**H, u = ( 1 ), !> ( v ) !> where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if !> SIDE = 'R'. !> !> If SIDE equals 'L', let !> C = [ C1 ] 1 !> [ C2 ] m-1 !> n !> Then C is overwritten by P*C. !> !> If SIDE equals 'R', let !> C = [ C1, C2 ] m !> 1 n-1 !> Then C is overwritten by C*P. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': form P * C !> = 'R': form C * P !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension !> (1 + (M-1)*abs(INCV)) if SIDE = 'L' !> (1 + (N-1)*abs(INCV)) if SIDE = 'R' !> The vector v in the representation of P. V is not used !> if TAU = 0. !> |
| [in] | INCV | !> INCV is INTEGER !> The increment between elements of v. INCV <> 0 !> |
| [in] | TAU | !> TAU is COMPLEX*16 !> The value tau in the representation of P. !> |
| [in,out] | C1 | !> C1 is COMPLEX*16 array, dimension !> (LDC,N) if SIDE = 'L' !> (M,1) if SIDE = 'R' !> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 !> if SIDE = 'R'. !> !> On exit, the first row of P*C if SIDE = 'L', or the first !> column of C*P if SIDE = 'R'. !> |
| [in,out] | C2 | !> C2 is COMPLEX*16 array, dimension !> (LDC, N) if SIDE = 'L' !> (LDC, N-1) if SIDE = 'R' !> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the !> m x (n - 1) matrix C2 if SIDE = 'R'. !> !> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P !> if SIDE = 'R'. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the arrays C1 and C2. !> LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L' !> (M) if SIDE = 'R' !> |
Definition at line 151 of file zlatzm.f.
| subroutine zpbcon | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision | anorm, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZPBCON
Download ZPBCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBCON estimates the reciprocal of the condition number (in the !> 1-norm) of a complex Hermitian positive definite band matrix using !> the Cholesky factorization A = U**H*U or A = L*L**H computed by !> ZPBTRF. !> !> An estimate is obtained for norm(inv(A)), and the reciprocal of the !> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of sub-diagonals if UPLO = 'L'. KD >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H of the band matrix A, stored in the !> first KD+1 rows of the array. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [in] | ANORM | !> ANORM is DOUBLE PRECISION !> The 1-norm (or infinity-norm) of the Hermitian band matrix A. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an !> estimate of the 1-norm of inv(A) computed in this routine. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 131 of file zpbcon.f.
| subroutine zpbequ | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision, dimension( * ) | s, | ||
| double precision | scond, | ||
| double precision | amax, | ||
| integer | info ) |
ZPBEQU
Download ZPBEQU + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBEQU computes row and column scalings intended to equilibrate a !> Hermitian positive definite band matrix A and reduce its condition !> number (with respect to the two-norm). S contains the scale factors, !> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with !> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This !> choice of S puts the condition number of B within a factor N of the !> smallest possible condition number over all possible diagonal !> scalings. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular of A is stored; !> = 'L': Lower triangular of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangle of the Hermitian band matrix A, !> stored in the first KD+1 rows of the array. The j-th column !> of A is stored in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array A. LDAB >= KD+1. !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !> |
| [out] | SCOND | !> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !> |
| [out] | AMAX | !> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix element. If AMAX is very !> close to overflow or very close to underflow, the matrix !> should be scaled. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !> |
Definition at line 129 of file zpbequ.f.
| subroutine zpbrfs | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| complex*16, dimension( ldafb, * ) | afb, | ||
| integer | ldafb, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZPBRFS
Download ZPBRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian positive definite !> and banded, and provides error bounds and backward error estimates !> for the solution. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangle of the Hermitian band matrix A, !> stored in the first KD+1 rows of the array. The j-th column !> of A is stored in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [in] | AFB | !> AFB is COMPLEX*16 array, dimension (LDAFB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H of the band matrix A as computed by !> ZPBTRF, in the same storage format as A (see AB). !> |
| [in] | LDAFB | !> LDAFB is INTEGER !> The leading dimension of the array AFB. LDAFB >= KD+1. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZPBTRS. !> On exit, the improved solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> ITMAX is the maximum number of steps of iterative refinement. !>
Definition at line 187 of file zpbrfs.f.
| subroutine zpbstf | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| integer | info ) |
ZPBSTF
Download ZPBSTF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBSTF computes a split Cholesky factorization of a complex !> Hermitian positive definite band matrix A. !> !> This routine is designed to be used in conjunction with ZHBGST. !> !> The factorization has the form A = S**H*S where S is a band matrix !> of the same bandwidth as A and the following structure: !> !> S = ( U ) !> ( M L ) !> !> where U is upper triangular of order m = (n+kd)/2, and L is lower !> triangular of order n-m. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first kd+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, if INFO = 0, the factor S from the split Cholesky !> factorization A = S**H*S. See Further Details. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the factorization could not be completed, !> because the updated element a(i,i) was negative; the !> matrix A is not positive definite. !> |
!> !> The band storage scheme is illustrated by the following example, when !> N = 7, KD = 2: !> !> S = ( s11 s12 s13 ) !> ( s22 s23 s24 ) !> ( s33 s34 ) !> ( s44 ) !> ( s53 s54 s55 ) !> ( s64 s65 s66 ) !> ( s75 s76 s77 ) !> !> If UPLO = 'U', the array AB holds: !> !> on entry: on exit: !> !> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H !> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H !> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 !> !> If UPLO = 'L', the array AB holds: !> !> on entry: on exit: !> !> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 !> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 * !> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * * !> !> Array elements marked * are not used by the routine; s12**H denotes !> conjg(s12); the diagonal elements of S are real. !>
Definition at line 152 of file zpbstf.f.
| subroutine zpbtf2 | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| integer | info ) |
ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
Download ZPBTF2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBTF2 computes the Cholesky factorization of a complex Hermitian !> positive definite band matrix A. !> !> The factorization has the form !> A = U**H * U , if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix, U**H is the conjugate transpose !> of U, and L is lower triangular. !> !> This is the unblocked version of the algorithm, calling Level 2 BLAS. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of super-diagonals of the matrix A if UPLO = 'U', !> or the number of sub-diagonals if UPLO = 'L'. KD >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**H *U or A = L*L**H of the band !> matrix A, in the same storage format as A. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> > 0: if INFO = k, the leading minor of order k is not !> positive definite, and the factorization could not be !> completed. !> |
!> !> The band storage scheme is illustrated by the following example, when !> N = 6, KD = 2, and UPLO = 'U': !> !> On entry: On exit: !> !> * * a13 a24 a35 a46 * * u13 u24 u35 u46 !> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 !> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 !> !> Similarly, if UPLO = 'L' the format of A is as follows: !> !> On entry: On exit: !> !> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 !> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * !> a31 a42 a53 a64 * * l31 l42 l53 l64 * * !> !> Array elements marked * are not used by the routine. !>
Definition at line 141 of file zpbtf2.f.
| subroutine zpbtrf | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| integer | info ) |
ZPBTRF
Download ZPBTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBTRF computes the Cholesky factorization of a complex Hermitian !> positive definite band matrix A. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in,out] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**H*U or A = L*L**H of the band !> matrix A, in the same storage format as A. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading minor of order i is not !> positive definite, and the factorization could not be !> completed. !> |
!> !> The band storage scheme is illustrated by the following example, when !> N = 6, KD = 2, and UPLO = 'U': !> !> On entry: On exit: !> !> * * a13 a24 a35 a46 * * u13 u24 u35 u46 !> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 !> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 !> !> Similarly, if UPLO = 'L' the format of A is as follows: !> !> On entry: On exit: !> !> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 !> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * !> a31 a42 a53 a64 * * l31 l42 l53 l64 * * !> !> Array elements marked * are not used by the routine. !>
Definition at line 141 of file zpbtrf.f.
| subroutine zpbtrs | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZPBTRS
Download ZPBTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPBTRS solves a system of linear equations A*X = B with a Hermitian !> positive definite band matrix A using the Cholesky factorization !> A = U**H *U or A = L*L**H computed by ZPBTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**H *U or A = L*L**H of the band matrix A, stored in the !> first KD+1 rows of the array. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 120 of file zpbtrs.f.
| subroutine zpftrf | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | a, | ||
| integer | info ) |
ZPFTRF
Download ZPFTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPFTRF computes the Cholesky factorization of a complex Hermitian !> positive definite matrix A. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular. !> !> This is the block version of the algorithm, calling Level 3 BLAS. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of RFP A is stored; !> = 'L': Lower triangle of RFP A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> On entry, the Hermitian matrix A in RFP format. RFP format is !> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' !> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is !> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is !> the Conjugate-transpose of RFP A as defined when !> TRANSR = 'N'. The contents of RFP A are defined by UPLO as !> follows: If UPLO = 'U' the RFP A contains the nt elements of !> upper packed A. If UPLO = 'L' the RFP A contains the elements !> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = !> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N !> is odd. See the Note below for more details. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization RFP A = U**H*U or RFP A = L*L**H. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading minor of order i is not !> positive definite, and the factorization could not be !> completed. !> !> Further Notes on RFP Format: !> ============================ !> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !> |
Definition at line 210 of file zpftrf.f.
| subroutine zpftri | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | a, | ||
| integer | info ) |
ZPFTRI
Download ZPFTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPFTRI computes the inverse of a complex Hermitian positive definite !> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H !> computed by ZPFTRF. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> On entry, the Hermitian matrix A in RFP format. RFP format is !> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' !> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is !> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is !> the Conjugate-transpose of RFP A as defined when !> TRANSR = 'N'. The contents of RFP A are defined by UPLO as !> follows: If UPLO = 'U' the RFP A contains the nt elements of !> upper packed A. If UPLO = 'L' the RFP A contains the elements !> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = !> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N !> is odd. See the Note below for more details. !> !> On exit, the Hermitian inverse of the original matrix, in the !> same storage format. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed. !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 211 of file zpftri.f.
| subroutine zpftrs | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( 0: * ) | a, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZPFTRS
Download ZPFTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPFTRS solves a system of linear equations A*X = B with a Hermitian !> positive definite matrix A using the Cholesky factorization !> A = U**H*U or A = L*L**H computed by ZPFTRF. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of RFP A is stored; !> = 'L': Lower triangle of RFP A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> The triangular factor U or L from the Cholesky factorization !> of RFP A = U**H*U or RFP A = L*L**H, as computed by ZPFTRF. !> See note below for more details about RFP A. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 219 of file zpftrs.f.
| subroutine zppcon | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision | anorm, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZPPCON
Download ZPPCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPCON estimates the reciprocal of the condition number (in the !> 1-norm) of a complex Hermitian positive definite packed matrix using !> the Cholesky factorization A = U**H*U or A = L*L**H computed by !> ZPPTRF. !> !> An estimate is obtained for norm(inv(A)), and the reciprocal of the !> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H, packed columnwise in a linear !> array. The j-th column of U or L is stored in the array AP !> as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. !> |
| [in] | ANORM | !> ANORM is DOUBLE PRECISION !> The 1-norm (or infinity-norm) of the Hermitian matrix A. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an !> estimate of the 1-norm of inv(A) computed in this routine. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 117 of file zppcon.f.
| subroutine zppequ | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision, dimension( * ) | s, | ||
| double precision | scond, | ||
| double precision | amax, | ||
| integer | info ) |
ZPPEQU
Download ZPPEQU + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPEQU computes row and column scalings intended to equilibrate a !> Hermitian positive definite matrix A in packed storage and reduce !> its condition number (with respect to the two-norm). S contains the !> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix !> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. !> This choice of S puts the condition number of B within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !> |
| [out] | SCOND | !> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !> |
| [out] | AMAX | !> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix element. If AMAX is very !> close to overflow or very close to underflow, the matrix !> should be scaled. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !> |
Definition at line 116 of file zppequ.f.
| subroutine zpprfs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | afp, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZPPRFS
Download ZPPRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian positive definite !> and packed, and provides error bounds and backward error estimates !> for the solution. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [in] | AFP | !> AFP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, !> packed columnwise in a linear array in the same format as A !> (see AP). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZPPTRS. !> On exit, the improved solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> ITMAX is the maximum number of steps of iterative refinement. !>
Definition at line 169 of file zpprfs.f.
| subroutine zpptrf | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer | info ) |
ZPPTRF
Download ZPPTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPTRF computes the Cholesky factorization of a complex Hermitian !> positive definite matrix A stored in packed format. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> See below for further details. !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**H*U or A = L*L**H, in the same !> storage format as A. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading minor of order i is not !> positive definite, and the factorization could not be !> completed. !> |
!> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the Hermitian matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !>
Definition at line 118 of file zpptrf.f.
| subroutine zpptri | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer | info ) |
ZPPTRI
Download ZPPTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPTRI computes the inverse of a complex Hermitian positive definite !> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H !> computed by ZPPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor is stored in AP; !> = 'L': Lower triangular factor is stored in AP. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H, packed columnwise as !> a linear array. The j-th column of U or L is stored in the !> array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. !> !> On exit, the upper or lower triangle of the (Hermitian) !> inverse of A, overwriting the input factor U or L. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed. !> |
Definition at line 92 of file zpptri.f.
| subroutine zpptrs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZPPTRS
Download ZPPTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPTRS solves a system of linear equations A*X = B with a Hermitian !> positive definite matrix A in packed storage using the Cholesky !> factorization A = U**H * U or A = L * L**H computed by ZPPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**H * U or A = L * L**H, packed columnwise in a linear !> array. The j-th column of U or L is stored in the array AP !> as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 107 of file zpptrs.f.
| subroutine zpstf2 | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| integer, dimension( n ) | piv, | ||
| integer | rank, | ||
| double precision | tol, | ||
| double precision, dimension( 2*n ) | work, | ||
| integer | info ) |
ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
Download ZPSTF2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPSTF2 computes the Cholesky factorization with complete !> pivoting of a complex Hermitian positive semidefinite matrix A. !> !> The factorization has the form !> P**T * A * P = U**H * U , if UPLO = 'U', !> P**T * A * P = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular, and !> P is stored as vector PIV. !> !> This algorithm does not attempt to check that A is positive !> semidefinite. This version of the algorithm calls level 2 BLAS. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> n by n upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading n by n lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization as above. !> |
| [out] | PIV | !> PIV is INTEGER array, dimension (N) !> PIV is such that the nonzero entries are P( PIV(K), K ) = 1. !> |
| [out] | RANK | !> RANK is INTEGER !> The rank of A given by the number of steps the algorithm !> completed. !> |
| [in] | TOL | !> TOL is DOUBLE PRECISION !> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) !> will be used. The algorithm terminates at the (K-1)st step !> if the pivot <= TOL. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (2*N) !> Work space. !> |
| [out] | INFO | !> INFO is INTEGER !> < 0: If INFO = -K, the K-th argument had an illegal value, !> = 0: algorithm completed successfully, and !> > 0: the matrix A is either rank deficient with computed rank !> as returned in RANK, or is not positive semidefinite. See !> Section 7 of LAPACK Working Note #161 for further !> information. !> |
Definition at line 141 of file zpstf2.f.
| subroutine zpstrf | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| integer, dimension( n ) | piv, | ||
| integer | rank, | ||
| double precision | tol, | ||
| double precision, dimension( 2*n ) | work, | ||
| integer | info ) |
ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
Download ZPSTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPSTRF computes the Cholesky factorization with complete !> pivoting of a complex Hermitian positive semidefinite matrix A. !> !> The factorization has the form !> P**T * A * P = U**H * U , if UPLO = 'U', !> P**T * A * P = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular, and !> P is stored as vector PIV. !> !> This algorithm does not attempt to check that A is positive !> semidefinite. This version of the algorithm calls level 3 BLAS. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> n by n upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading n by n lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization as above. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | PIV | !> PIV is INTEGER array, dimension (N) !> PIV is such that the nonzero entries are P( PIV(K), K ) = 1. !> |
| [out] | RANK | !> RANK is INTEGER !> The rank of A given by the number of steps the algorithm !> completed. !> |
| [in] | TOL | !> TOL is DOUBLE PRECISION !> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) !> will be used. The algorithm terminates at the (K-1)st step !> if the pivot <= TOL. !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (2*N) !> Work space. !> |
| [out] | INFO | !> INFO is INTEGER !> < 0: If INFO = -K, the K-th argument had an illegal value, !> = 0: algorithm completed successfully, and !> > 0: the matrix A is either rank deficient with computed rank !> as returned in RANK, or is not positive semidefinite. See !> Section 7 of LAPACK Working Note #161 for further !> information. !> |
Definition at line 141 of file zpstrf.f.
| subroutine zspcon | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| double precision | anorm, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZSPCON
Download ZSPCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSPCON estimates the reciprocal of the condition number (in the !> 1-norm) of a complex symmetric packed matrix A using the !> factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. !> !> An estimate is obtained for norm(inv(A)), and the reciprocal of the !> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZSPTRF, stored as a !> packed triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSPTRF. !> |
| [in] | ANORM | !> ANORM is DOUBLE PRECISION !> The 1-norm of the original matrix A. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an !> estimate of the 1-norm of inv(A) computed in this routine. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 117 of file zspcon.f.
| subroutine zsprfs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | afp, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZSPRFS
Download ZSPRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is symmetric indefinite !> and packed, and provides error bounds and backward error estimates !> for the solution. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> |
| [in] | AFP | !> AFP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The factored form of the matrix A. AFP contains the block !> diagonal matrix D and the multipliers used to obtain the !> factor U or L from the factorization A = U*D*U**T or !> A = L*D*L**T as computed by ZSPTRF, stored as a packed !> triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSPTRF. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in,out] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZSPTRS. !> On exit, the improved solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> ITMAX is the maximum number of steps of iterative refinement. !>
Definition at line 178 of file zsprfs.f.
| subroutine zsptrf | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| integer | info ) |
ZSPTRF
Download ZSPTRF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSPTRF computes the factorization of a complex symmetric matrix A !> stored in packed format using the Bunch-Kaufman diagonal pivoting !> method: !> !> A = U*D*U**T or A = L*D*L**T !> !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, the block diagonal matrix D and the multipliers used !> to obtain the factor U or L, stored as a packed triangular !> matrix overwriting A (see below for further details). !> |
| [out] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D. !> If IPIV(k) > 0, then rows and columns k and IPIV(k) were !> interchanged and D(k,k) is a 1-by-1 diagonal block. !> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and !> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) !> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = !> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were !> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, and division by zero will occur if it !> is used to solve a system of equations. !> |
!> !> 5-96 - Based on modifications by J. Lewis, Boeing Computer Services !> Company !> !> If UPLO = 'U', then A = U*D*U**T, where !> U = P(n)*U(n)* ... *P(k)U(k)* ..., !> i.e., U is a product of terms P(k)*U(k), where k decreases from n to !> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 !> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as !> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such !> that if the diagonal block D(k) is of order s (s = 1 or 2), then !> !> ( I v 0 ) k-s !> U(k) = ( 0 I 0 ) s !> ( 0 0 I ) n-k !> k-s s n-k !> !> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). !> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), !> and A(k,k), and v overwrites A(1:k-2,k-1:k). !> !> If UPLO = 'L', then A = L*D*L**T, where !> L = P(1)*L(1)* ... *P(k)*L(k)* ..., !> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to !> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 !> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as !> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such !> that if the diagonal block D(k) is of order s (s = 1 or 2), then !> !> ( I 0 0 ) k-1 !> L(k) = ( 0 I 0 ) s !> ( 0 v I ) n-k-s+1 !> k-1 s n-k-s+1 !> !> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). !> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), !> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). !>
Definition at line 157 of file zsptrf.f.
| subroutine zsptri | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZSPTRI
Download ZSPTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSPTRI computes the inverse of a complex symmetric indefinite matrix !> A in packed storage using the factorization A = U*D*U**T or !> A = L*D*L**T computed by ZSPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the block diagonal matrix D and the multipliers !> used to obtain the factor U or L as computed by ZSPTRF, !> stored as a packed triangular matrix. !> !> On exit, if INFO = 0, the (symmetric) inverse of the original !> matrix, stored as a packed triangular matrix. The j-th column !> of inv(A) is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; !> if UPLO = 'L', !> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSPTRF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its !> inverse could not be computed. !> |
Definition at line 108 of file zsptri.f.
| subroutine zsptrs | ( | character | uplo, |
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| integer, dimension( * ) | ipiv, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZSPTRS
Download ZSPTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSPTRS solves a system of linear equations A*X = B with a complex !> symmetric matrix A stored in packed format using the factorization !> A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZSPTRF, stored as a !> packed triangular matrix. !> |
| [in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSPTRF. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 114 of file zsptrs.f.
| subroutine zstedc | ( | character | compz, |
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| integer | info ) |
ZSTEDC
Download ZSTEDC + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the divide and conquer method. !> The eigenvectors of a full or band complex Hermitian matrix can also !> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this !> matrix to tridiagonal form. !> !> This code makes very mild assumptions about floating point !> arithmetic. It will work on machines with a guard digit in !> add/subtract, or on those binary machines without guard digits !> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. !> It could conceivably fail on hexadecimal or decimal machines !> without guard digits, but we know of none. See DLAED3 for details. !>
| [in] | COMPZ | !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only. !> = 'I': Compute eigenvectors of tridiagonal matrix also. !> = 'V': Compute eigenvectors of original Hermitian matrix !> also. On entry, Z contains the unitary matrix used !> to reduce the original matrix to tridiagonal form. !> |
| [in] | N | !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix. N >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix. !> On exit, if INFO = 0, the eigenvalues in ascending order. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the subdiagonal elements of the tridiagonal matrix. !> On exit, E has been destroyed. !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ,N) !> On entry, if COMPZ = 'V', then Z contains the unitary !> matrix used in the reduction to tridiagonal form. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original Hermitian matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix. !> If COMPZ = 'N', then Z is not referenced. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1. !> If eigenvectors are desired, then LDZ >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. !> If COMPZ = 'V' and N > 1, LWORK must be at least N*N. !> Note that for COMPZ = 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LWORK need !> only be 1. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The dimension of the array RWORK. !> If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. !> If COMPZ = 'V' and N > 1, LRWORK must be at least !> 1 + 3*N + 2*N*lg N + 4*N**2 , !> where lg( N ) = smallest integer k such !> that 2**k >= N. !> If COMPZ = 'I' and N > 1, LRWORK must be at least !> 1 + 4*N + 2*N**2 . !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LRWORK !> need only be max(1,2*(N-1)). !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. !> If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. !> If COMPZ = 'V' or N > 1, LIWORK must be at least !> 6 + 6*N + 5*N*lg N. !> If COMPZ = 'I' or N > 1, LIWORK must be at least !> 3 + 5*N . !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LIWORK !> need only be 1. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1). !> |
Definition at line 210 of file zstedc.f.
| subroutine zstegr | ( | character | jobz, |
| character | range, | ||
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| double precision | vl, | ||
| double precision | vu, | ||
| integer | il, | ||
| integer | iu, | ||
| double precision | abstol, | ||
| integer | m, | ||
| double precision, dimension( * ) | w, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| integer, dimension( * ) | isuppz, | ||
| double precision, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| integer | info ) |
ZSTEGR
Download ZSTEGR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues. !> !> ZSTEGR is a compatibility wrapper around the improved ZSTEMR routine. !> See ZSTEMR for further details. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used. !> !> Note : ZSTEGR and ZSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs. Normal execution may create these exceptiona values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard. !>
| [in] | JOBZ | !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> |
| [in] | RANGE | !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T. On exit, D is overwritten. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E. E(N) need not be set on !> input, but is used internally as workspace. !> On exit, E is overwritten. !> |
| [in] | VL | !> VL is DOUBLE PRECISION !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
| [in] | VU | !> VU is DOUBLE PRECISION !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
| [in] | IL | !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
| [in] | IU | !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
| [in] | ABSTOL | !> ABSTOL is DOUBLE PRECISION !> Unused. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions. !> |
| [out] | M | !> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !> |
| [out] | W | !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !> Supplying N columns is always safe. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N). !> |
| [out] | ISUPPZ | !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i.e., the indices !> indicating the nonzero elements in Z. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i ). This is relevant in the case when the matrix !> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in DLARRE, !> if INFO = 2X, internal error in ZLARRV. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by DLARRE or !> ZLARRV, respectively. !> |
Definition at line 262 of file zstegr.f.
| subroutine zstein | ( | integer | n, |
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| integer | m, | ||
| double precision, dimension( * ) | w, | ||
| integer, dimension( * ) | iblock, | ||
| integer, dimension( * ) | isplit, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| double precision, dimension( * ) | work, | ||
| integer, dimension( * ) | iwork, | ||
| integer, dimension( * ) | ifail, | ||
| integer | info ) |
ZSTEIN
Download ZSTEIN + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSTEIN computes the eigenvectors of a real symmetric tridiagonal !> matrix T corresponding to specified eigenvalues, using inverse !> iteration. !> !> The maximum number of iterations allowed for each eigenvector is !> specified by an internal parameter MAXITS (currently set to 5). !> !> Although the eigenvectors are real, they are stored in a complex !> array, which may be passed to ZUNMTR or ZUPMTR for back !> transformation to the eigenvectors of a complex Hermitian matrix !> which was reduced to tridiagonal form. !> !>
| [in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the tridiagonal matrix T. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the tridiagonal matrix !> T, stored in elements 1 to N-1. !> |
| [in] | M | !> M is INTEGER !> The number of eigenvectors to be found. 0 <= M <= N. !> |
| [in] | W | !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements of W contain the eigenvalues for !> which eigenvectors are to be computed. The eigenvalues !> should be grouped by split-off block and ordered from !> smallest to largest within the block. ( The output array !> W from DSTEBZ with ORDER = 'B' is expected here. ) !> |
| [in] | IBLOCK | !> IBLOCK is INTEGER array, dimension (N) !> The submatrix indices associated with the corresponding !> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to !> the first submatrix from the top, =2 if W(i) belongs to !> the second submatrix, etc. ( The output array IBLOCK !> from DSTEBZ is expected here. ) !> |
| [in] | ISPLIT | !> ISPLIT is INTEGER array, dimension (N) !> The splitting points, at which T breaks up into submatrices. !> The first submatrix consists of rows/columns 1 to !> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 !> through ISPLIT( 2 ), etc. !> ( The output array ISPLIT from DSTEBZ is expected here. ) !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, M) !> The computed eigenvectors. The eigenvector associated !> with the eigenvalue W(i) is stored in the i-th column of !> Z. Any vector which fails to converge is set to its current !> iterate after MAXITS iterations. !> The imaginary parts of the eigenvectors are set to zero. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= max(1,N). !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (5*N) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
| [out] | IFAIL | !> IFAIL is INTEGER array, dimension (M) !> On normal exit, all elements of IFAIL are zero. !> If one or more eigenvectors fail to converge after !> MAXITS iterations, then their indices are stored in !> array IFAIL. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, then i eigenvectors failed to converge !> in MAXITS iterations. Their indices are stored in !> array IFAIL. !> |
!> MAXITS INTEGER, default = 5 !> The maximum number of iterations performed. !> !> EXTRA INTEGER, default = 2 !> The number of iterations performed after norm growth !> criterion is satisfied, should be at least 1. !>
Definition at line 180 of file zstein.f.
| subroutine zstemr | ( | character | jobz, |
| character | range, | ||
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| double precision | vl, | ||
| double precision | vu, | ||
| integer | il, | ||
| integer | iu, | ||
| integer | m, | ||
| double precision, dimension( * ) | w, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| integer | nzc, | ||
| integer, dimension( * ) | isuppz, | ||
| logical | tryrac, | ||
| double precision, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| integer | info ) |
ZSTEMR
Download ZSTEMR + dependencies [TGZ] [ZIP] [TXT]
!>
!> ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
!> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
!> a well defined set of pairwise different real eigenvalues, the corresponding
!> real eigenvectors are pairwise orthogonal.
!>
!> The spectrum may be computed either completely or partially by specifying
!> either an interval (VL,VU] or a range of indices IL:IU for the desired
!> eigenvalues.
!>
!> Depending on the number of desired eigenvalues, these are computed either
!> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
!> computed by the use of various suitable L D L^T factorizations near clusters
!> of close eigenvalues (referred to as RRRs, Relatively Robust
!> Representations). An informal sketch of the algorithm follows.
!>
!> For each unreduced block (submatrix) of T,
!> (a) Compute T - sigma I = L D L^T, so that L and D
!> define all the wanted eigenvalues to high relative accuracy.
!> This means that small relative changes in the entries of D and L
!> cause only small relative changes in the eigenvalues and
!> eigenvectors. The standard (unfactored) representation of the
!> tridiagonal matrix T does not have this property in general.
!> (b) Compute the eigenvalues to suitable accuracy.
!> If the eigenvectors are desired, the algorithm attains full
!> accuracy of the computed eigenvalues only right before
!> the corresponding vectors have to be computed, see steps c) and d).
!> (c) For each cluster of close eigenvalues, select a new
!> shift close to the cluster, find a new factorization, and refine
!> the shifted eigenvalues to suitable accuracy.
!> (d) For each eigenvalue with a large enough relative separation compute
!> the corresponding eigenvector by forming a rank revealing twisted
!> factorization. Go back to (c) for any clusters that remain.
!>
!> For more details, see:
!> - Inderjit S. Dhillon and Beresford N. Parlett:
!> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
!> - Inderjit Dhillon and Beresford Parlett: SIAM Journal on Matrix Analysis and Applications, Vol. 25,
!> 2004. Also LAPACK Working Note 154.
!> - Inderjit Dhillon: ,
!> Computer Science Division Technical Report No. UCB/CSD-97-971,
!> UC Berkeley, May 1997.
!>
!> Further Details
!> 1.ZSTEMR works only on machines which follow IEEE-754
!> floating-point standard in their handling of infinities and NaNs.
!> This permits the use of efficient inner loops avoiding a check for
!> zero divisors.
!>
!> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
!> real symmetric tridiagonal form.
!>
!> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
!> and potentially complex numbers on its off-diagonals. By applying a
!> similarity transform with an appropriate diagonal matrix
!> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
!> matrix can be transformed into a real symmetric matrix and complex
!> arithmetic can be entirely avoided.)
!>
!> While the eigenvectors of the real symmetric tridiagonal matrix are real,
!> the eigenvectors of original complex Hermitean matrix have complex entries
!> in general.
!> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
!> ZSTEMR accepts complex workspace to facilitate interoperability
!> with ZUNMTR or ZUPMTR.
!> | [in] | JOBZ | !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> |
| [in] | RANGE | !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T. On exit, D is overwritten. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E. E(N) need not be set on !> input, but is used internally as workspace. !> On exit, E is overwritten. !> |
| [in] | VL | !> VL is DOUBLE PRECISION !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
| [in] | VU | !> VU is DOUBLE PRECISION !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
| [in] | IL | !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
| [in] | IU | !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
| [out] | M | !> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !> |
| [out] | W | !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and can be computed with a workspace !> query by setting NZC = -1, see below. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N). !> |
| [in] | NZC | !> NZC is INTEGER !> The number of eigenvectors to be held in the array Z. !> If RANGE = 'A', then NZC >= max(1,N). !> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. !> If RANGE = 'I', then NZC >= IU-IL+1. !> If NZC = -1, then a workspace query is assumed; the !> routine calculates the number of columns of the array Z that !> are needed to hold the eigenvectors. !> This value is returned as the first entry of the Z array, and !> no error message related to NZC is issued by XERBLA. !> |
| [out] | ISUPPZ | !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i.e., the indices !> indicating the nonzero elements in Z. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i ). This is relevant in the case when the matrix !> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. !> |
| [in,out] | TRYRAC | !> TRYRAC is LOGICAL !> If TRYRAC = .TRUE., indicates that the code should check whether !> the tridiagonal matrix defines its eigenvalues to high relative !> accuracy. If so, the code uses relative-accuracy preserving !> algorithms that might be (a bit) slower depending on the matrix. !> If the matrix does not define its eigenvalues to high relative !> accuracy, the code can uses possibly faster algorithms. !> If TRYRAC = .FALSE., the code is not required to guarantee !> relatively accurate eigenvalues and can use the fastest possible !> techniques. !> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix !> does not define its eigenvalues to high relative accuracy. !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in DLARRE, !> if INFO = 2X, internal error in ZLARRV. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by DLARRE or !> ZLARRV, respectively. !> |
Definition at line 335 of file zstemr.f.
| subroutine zsteqr | ( | character | compz, |
| integer | n, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| double precision, dimension( * ) | work, | ||
| integer | info ) |
ZSTEQR
Download ZSTEQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the implicit QL or QR method. !> The eigenvectors of a full or band complex Hermitian matrix can also !> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this !> matrix to tridiagonal form. !>
| [in] | COMPZ | !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only. !> = 'V': Compute eigenvalues and eigenvectors of the original !> Hermitian matrix. On entry, Z must contain the !> unitary matrix used to reduce the original matrix !> to tridiagonal form. !> = 'I': Compute eigenvalues and eigenvectors of the !> tridiagonal matrix. Z is initialized to the identity !> matrix. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
| [in,out] | D | !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix. !> On exit, if INFO = 0, the eigenvalues in ascending order. !> |
| [in,out] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the (n-1) subdiagonal elements of the tridiagonal !> matrix. !> On exit, E has been destroyed. !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, N) !> On entry, if COMPZ = 'V', then Z contains the unitary !> matrix used in the reduction to tridiagonal form. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original Hermitian matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix. !> If COMPZ = 'N', then Z is not referenced. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> eigenvectors are desired, then LDZ >= max(1,N). !> |
| [out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2)) !> If COMPZ = 'N', then WORK is not referenced. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: the algorithm has failed to find all the eigenvalues in !> a total of 30*N iterations; if INFO = i, then i !> elements of E have not converged to zero; on exit, D !> and E contain the elements of a symmetric tridiagonal !> matrix which is unitarily similar to the original !> matrix. !> |
Definition at line 131 of file zsteqr.f.
| subroutine ztbcon | ( | character | norm, |
| character | uplo, | ||
| character | diag, | ||
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTBCON
Download ZTBCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTBCON estimates the reciprocal of the condition number of a !> triangular band matrix A, in either the 1-norm or the infinity-norm. !> !> The norm of A is computed and an estimate is obtained for !> norm(inv(A)), then the reciprocal of the condition number is !> computed as !> RCOND = 1 / ( norm(A) * norm(inv(A)) ). !>
| [in] | NORM | !> NORM is CHARACTER*1 !> Specifies whether the 1-norm condition number or the !> infinity-norm condition number is required: !> = '1' or 'O': 1-norm; !> = 'I': Infinity-norm. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(norm(A) * norm(inv(A))). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 141 of file ztbcon.f.
| subroutine ztbrfs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | kd, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTBRFS
Download ZTBRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTBRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular band !> coefficient matrix. !> !> The solution matrix X must be computed by ZTBTRS or some other !> means before entering this routine. ZTBRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 186 of file ztbrfs.f.
| subroutine ztbtrs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | kd, | ||
| integer | nrhs, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZTBTRS
Download ZTBTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTBTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular band matrix of order N, and B is an !> N-by-NRHS matrix. A check is made to verify that A is nonsingular. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | KD | !> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AB | !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of AB. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, if INFO = 0, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is zero, !> indicating that the matrix is singular and the !> solutions X have not been computed. !> |
Definition at line 144 of file ztbtrs.f.
| subroutine ztfsm | ( | character | transr, |
| character | side, | ||
| character | uplo, | ||
| character | trans, | ||
| character | diag, | ||
| integer | m, | ||
| integer | n, | ||
| complex*16 | alpha, | ||
| complex*16, dimension( 0: * ) | a, | ||
| complex*16, dimension( 0: ldb-1, 0: * ) | b, | ||
| integer | ldb ) |
ZTFSM solves a matrix equation (one operand is a triangular matrix in RFP format).
Download ZTFSM + dependencies [TGZ] [ZIP] [TXT]
!> !> Level 3 BLAS like routine for A in RFP Format. !> !> ZTFSM solves the matrix equation !> !> op( A )*X = alpha*B or X*op( A ) = alpha*B !> !> where alpha is a scalar, X and B are m by n matrices, A is a unit, or !> non-unit, upper or lower triangular matrix and op( A ) is one of !> !> op( A ) = A or op( A ) = A**H. !> !> A is in Rectangular Full Packed (RFP) Format. !> !> The matrix X is overwritten on B. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal Form of RFP A is stored; !> = 'C': The Conjugate-transpose Form of RFP A is stored. !> |
| [in] | SIDE | !> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether op( A ) appears on the left !> or right of X as follows: !> !> SIDE = 'L' or 'l' op( A )*X = alpha*B. !> !> SIDE = 'R' or 'r' X*op( A ) = alpha*B. !> !> Unchanged on exit. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the RFP matrix A came from !> an upper or lower triangular matrix as follows: !> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix !> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix !> !> Unchanged on exit. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> On entry, TRANS specifies the form of op( A ) to be used !> in the matrix multiplication as follows: !> !> TRANS = 'N' or 'n' op( A ) = A. !> !> TRANS = 'C' or 'c' op( A ) = conjg( A' ). !> !> Unchanged on exit. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> On entry, DIAG specifies whether or not RFP A is unit !> triangular as follows: !> !> DIAG = 'U' or 'u' A is assumed to be unit triangular. !> !> DIAG = 'N' or 'n' A is not assumed to be unit !> triangular. !> !> Unchanged on exit. !> |
| [in] | M | !> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !> Unchanged on exit. !> |
| [in] | N | !> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !> Unchanged on exit. !> |
| [in] | ALPHA | !> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !> Unchanged on exit. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (N*(N+1)/2) !> NT = N*(N+1)/2. On entry, the matrix A in RFP Format. !> RFP Format is described by TRANSR, UPLO and N as follows: !> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; !> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If !> TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as !> defined when TRANSR = 'N'. The contents of RFP A are defined !> by UPLO as follows: If UPLO = 'U' the RFP A contains the NT !> elements of upper packed A either in normal or !> conjugate-transpose Format. If UPLO = 'L' the RFP A contains !> the NT elements of lower packed A either in normal or !> conjugate-transpose Format. The LDA of RFP A is (N+1)/2 when !> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is !> even and is N when is odd. !> See the Note below for more details. Unchanged on exit. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> Before entry, the leading m by n part of the array B must !> contain the right-hand side matrix B, and on exit is !> overwritten by the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !> Unchanged on exit. !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 296 of file ztfsm.f.
| subroutine ztftri | ( | character | transr, |
| character | uplo, | ||
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | a, | ||
| integer | info ) |
ZTFTRI
Download ZTFTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTFTRI computes the inverse of a triangular matrix A stored in RFP !> format. !> !> This is a Level 3 BLAS version of the algorithm. !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> On entry, the triangular matrix A in RFP format. RFP format !> is described by TRANSR, UPLO, and N as follows: If TRANSR = !> 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is !> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is !> the Conjugate-transpose of RFP A as defined when !> TRANSR = 'N'. The contents of RFP A are defined by UPLO as !> follows: If UPLO = 'U' the RFP A contains the nt elements of !> upper packed A; If UPLO = 'L' the RFP A contains the nt !> elements of lower packed A. The LDA of RFP A is (N+1)/2 when !> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is !> even and N is odd. See the Note below for more details. !> !> On exit, the (triangular) inverse of the original matrix, in !> the same storage format. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, A(i,i) is exactly zero. The triangular !> matrix is singular and its inverse can not be computed. !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 220 of file ztftri.f.
| subroutine ztfttp | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | arf, | ||
| complex*16, dimension( 0: * ) | ap, | ||
| integer | info ) |
ZTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
Download ZTFTTP + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTFTTP copies a triangular matrix A from rectangular full packed !> format (TF) to standard packed format (TP). !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': ARF is in Normal format; !> = 'C': ARF is in Conjugate-transpose format; !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | ARF | !> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On entry, the upper or lower triangular matrix A stored in !> RFP format. For a further discussion see Notes below. !> |
| [out] | AP | !> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On exit, the upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 207 of file ztfttp.f.
| subroutine ztfttr | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | arf, | ||
| complex*16, dimension( 0: lda-1, 0: * ) | a, | ||
| integer | lda, | ||
| integer | info ) |
ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
Download ZTFTTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTFTTR copies a triangular matrix A from rectangular full packed !> format (TF) to standard full format (TR). !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': ARF is in Normal format; !> = 'C': ARF is in Conjugate-transpose format; !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | ARF | !> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On entry, the upper or lower triangular matrix A stored in !> RFP format. For a further discussion see Notes below. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension ( LDA, N ) !> On exit, the triangular matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of the array A contains !> the upper triangular matrix, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of the array A contains !> the lower triangular matrix, and the strictly upper !> triangular part of A is not referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 215 of file ztfttr.f.
| subroutine ztgsen | ( | integer | ijob, |
| logical | wantq, | ||
| logical | wantz, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| integer | m, | ||
| double precision | pl, | ||
| double precision | pr, | ||
| double precision, dimension( * ) | dif, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| integer | info ) |
ZTGSEN
Download ZTGSEN + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTGSEN reorders the generalized Schur decomposition of a complex !> matrix pair (A, B) (in terms of an unitary equivalence trans- !> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues !> appears in the leading diagonal blocks of the pair (A,B). The leading !> columns of Q and Z form unitary bases of the corresponding left and !> right eigenspaces (deflating subspaces). (A, B) must be in !> generalized Schur canonical form, that is, A and B are both upper !> triangular. !> !> ZTGSEN also computes the generalized eigenvalues !> !> w(j)= ALPHA(j) / BETA(j) !> !> of the reordered matrix pair (A, B). !> !> Optionally, the routine computes estimates of reciprocal condition !> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), !> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) !> between the matrix pairs (A11, B11) and (A22,B22) that correspond to !> the selected cluster and the eigenvalues outside the cluster, resp., !> and norms of onto left and right eigenspaces w.r.t. !> the selected cluster in the (1,1)-block. !> !>
| [in] | IJOB | !> IJOB is INTEGER !> Specifies whether condition numbers are required for the !> cluster of eigenvalues (PL and PR) or the deflating subspaces !> (Difu and Difl): !> =0: Only reorder w.r.t. SELECT. No extras. !> =1: Reciprocal of norms of onto left and right !> eigenspaces w.r.t. the selected cluster (PL and PR). !> =2: Upper bounds on Difu and Difl. F-norm-based estimate !> (DIF(1:2)). !> =3: Estimate of Difu and Difl. 1-norm-based estimate !> (DIF(1:2)). !> About 5 times as expensive as IJOB = 2. !> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic !> version to get it all. !> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) !> |
| [in] | WANTQ | !> WANTQ is LOGICAL !> .TRUE. : update the left transformation matrix Q; !> .FALSE.: do not update Q. !> |
| [in] | WANTZ | !> WANTZ is LOGICAL !> .TRUE. : update the right transformation matrix Z; !> .FALSE.: do not update Z. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> SELECT specifies the eigenvalues in the selected cluster. To !> select an eigenvalue w(j), SELECT(j) must be set to !> .TRUE.. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension(LDA,N) !> On entry, the upper triangular matrix A, in generalized !> Schur canonical form. !> On exit, A is overwritten by the reordered matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension(LDB,N) !> On entry, the upper triangular matrix B, in generalized !> Schur canonical form. !> On exit, B is overwritten by the reordered matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (N) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (N) !> !> The diagonal elements of A and B, respectively, !> when the pair (A,B) has been reduced to generalized Schur !> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized !> eigenvalues. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. !> On exit, Q has been postmultiplied by the left unitary !> transformation matrix which reorder (A, B); The leading M !> columns of Q form orthonormal bases for the specified pair of !> left eigenspaces (deflating subspaces). !> If WANTQ = .FALSE., Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= 1. !> If WANTQ = .TRUE., LDQ >= N. !> |
| [in,out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ,N) !> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. !> On exit, Z has been postmultiplied by the left unitary !> transformation matrix which reorder (A, B); The leading M !> columns of Z form orthonormal bases for the specified pair of !> left eigenspaces (deflating subspaces). !> If WANTZ = .FALSE., Z is not referenced. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1. !> If WANTZ = .TRUE., LDZ >= N. !> |
| [out] | M | !> M is INTEGER !> The dimension of the specified pair of left and right !> eigenspaces, (deflating subspaces) 0 <= M <= N. !> |
| [out] | PL | !> PL is DOUBLE PRECISION !> |
| [out] | PR | !> PR is DOUBLE PRECISION !> !> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the !> reciprocal of the norm of onto left and right !> eigenspace with respect to the selected cluster. !> 0 < PL, PR <= 1. !> If M = 0 or M = N, PL = PR = 1. !> If IJOB = 0, 2 or 3 PL, PR are not referenced. !> |
| [out] | DIF | !> DIF is DOUBLE PRECISION array, dimension (2). !> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. !> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on !> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based !> estimates of Difu and Difl, computed using reversed !> communication with ZLACN2. !> If M = 0 or N, DIF(1:2) = F-norm([A, B]). !> If IJOB = 0 or 1, DIF is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 1 !> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M) !> If IJOB = 3 or 5, LWORK >= 4*M*(N-M) !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= 1. !> If IJOB = 1, 2 or 4, LIWORK >= N+2; !> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M)); !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> =0: Successful exit. !> <0: If INFO = -i, the i-th argument had an illegal value. !> =1: Reordering of (A, B) failed because the transformed !> matrix pair (A, B) would be too far from generalized !> Schur form; the problem is very ill-conditioned. !> (A, B) may have been partially reordered. !> If requested, 0 is returned in DIF(*), PL and PR. !> |
!> !> ZTGSEN first collects the selected eigenvalues by computing unitary !> U and W that move them to the top left corner of (A, B). In other !> words, the selected eigenvalues are the eigenvalues of (A11, B11) in !> !> U**H*(A, B)*W = (A11 A12) (B11 B12) n1 !> ( 0 A22),( 0 B22) n2 !> n1 n2 n1 n2 !> !> where N = n1+n2 and U**H means the conjugate transpose of U. The first !> n1 columns of U and W span the specified pair of left and right !> eigenspaces (deflating subspaces) of (A, B). !> !> If (A, B) has been obtained from the generalized real Schur !> decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the !> reordered generalized Schur form of (C, D) is given by !> !> (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H, !> !> and the first n1 columns of Q*U and Z*W span the corresponding !> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). !> !> Note that if the selected eigenvalue is sufficiently ill-conditioned, !> then its value may differ significantly from its value before !> reordering. !> !> The reciprocal condition numbers of the left and right eigenspaces !> spanned by the first n1 columns of U and W (or Q*U and Z*W) may !> be returned in DIF(1:2), corresponding to Difu and Difl, resp. !> !> The Difu and Difl are defined as: !> !> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) !> and !> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], !> !> where sigma-min(Zu) is the smallest singular value of the !> (2*n1*n2)-by-(2*n1*n2) matrix !> !> Zu = [ kron(In2, A11) -kron(A22**H, In1) ] !> [ kron(In2, B11) -kron(B22**H, In1) ]. !> !> Here, Inx is the identity matrix of size nx and A22**H is the !> conjugate transpose of A22. kron(X, Y) is the Kronecker product between !> the matrices X and Y. !> !> When DIF(2) is small, small changes in (A, B) can cause large changes !> in the deflating subspace. An approximate (asymptotic) bound on the !> maximum angular error in the computed deflating subspaces is !> !> EPS * norm((A, B)) / DIF(2), !> !> where EPS is the machine precision. !> !> The reciprocal norm of the projectors on the left and right !> eigenspaces associated with (A11, B11) may be returned in PL and PR. !> They are computed as follows. First we compute L and R so that !> P*(A, B)*Q is block diagonal, where !> !> P = ( I -L ) n1 Q = ( I R ) n1 !> ( 0 I ) n2 and ( 0 I ) n2 !> n1 n2 n1 n2 !> !> and (L, R) is the solution to the generalized Sylvester equation !> !> A11*R - L*A22 = -A12 !> B11*R - L*B22 = -B12 !> !> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). !> An approximate (asymptotic) bound on the average absolute error of !> the selected eigenvalues is !> !> EPS * norm((A, B)) / PL. !> !> There are also global error bounds which valid for perturbations up !> to a certain restriction: A lower bound (x) on the smallest !> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and !> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), !> (i.e. (A + E, B + F), is !> !> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). !> !> An approximate bound on x can be computed from DIF(1:2), PL and PR. !> !> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed !> (L', R') and unperturbed (L, R) left and right deflating subspaces !> associated with the selected cluster in the (1,1)-blocks can be !> bounded as !> !> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) !> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) !> !> See LAPACK User's Guide section 4.11 or the following references !> for more information. !> !> Note that if the default method for computing the Frobenius-norm- !> based estimate DIF is not wanted (see ZLATDF), then the parameter !> IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF !> (IJOB = 2 will be used)). See ZTGSYL for more details. !>
Definition at line 430 of file ztgsen.f.
| subroutine ztgsja | ( | character | jobu, |
| character | jobv, | ||
| character | jobq, | ||
| integer | m, | ||
| integer | p, | ||
| integer | n, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision | tola, | ||
| double precision | tolb, | ||
| double precision, dimension( * ) | alpha, | ||
| double precision, dimension( * ) | beta, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( * ) | work, | ||
| integer | ncycle, | ||
| integer | info ) |
ZTGSJA
Download ZTGSJA + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTGSJA computes the generalized singular value decomposition (GSVD) !> of two complex upper triangular (or trapezoidal) matrices A and B. !> !> On entry, it is assumed that matrices A and B have the following !> forms, which may be obtained by the preprocessing subroutine ZGGSVP !> from a general M-by-N matrix A and P-by-N matrix B: !> !> N-K-L K L !> A = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> A = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> B = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. !> !> On exit, !> !> U**H *A*Q = D1*( 0 R ), V**H *B*Q = D2*( 0 R ), !> !> where U, V and Q are unitary matrices. !> R is a nonsingular upper triangular matrix, and D1 !> and D2 are ``diagonal'' matrices, which are of the following !> structures: !> !> If M-K-L >= 0, !> !> K L !> D1 = K ( I 0 ) !> L ( 0 C ) !> M-K-L ( 0 0 ) !> !> K L !> D2 = L ( 0 S ) !> P-L ( 0 0 ) !> !> N-K-L K L !> ( 0 R ) = K ( 0 R11 R12 ) K !> L ( 0 0 R22 ) L !> !> where !> !> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), !> S = diag( BETA(K+1), ... , BETA(K+L) ), !> C**2 + S**2 = I. !> !> R is stored in A(1:K+L,N-K-L+1:N) on exit. !> !> If M-K-L < 0, !> !> K M-K K+L-M !> D1 = K ( I 0 0 ) !> M-K ( 0 C 0 ) !> !> K M-K K+L-M !> D2 = M-K ( 0 S 0 ) !> K+L-M ( 0 0 I ) !> P-L ( 0 0 0 ) !> !> N-K-L K M-K K+L-M !> ( 0 R ) = K ( 0 R11 R12 R13 ) !> M-K ( 0 0 R22 R23 ) !> K+L-M ( 0 0 0 R33 ) !> !> where !> C = diag( ALPHA(K+1), ... , ALPHA(M) ), !> S = diag( BETA(K+1), ... , BETA(M) ), !> C**2 + S**2 = I. !> !> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored !> ( 0 R22 R23 ) !> in B(M-K+1:L,N+M-K-L+1:N) on exit. !> !> The computation of the unitary transformation matrices U, V or Q !> is optional. These matrices may either be formed explicitly, or they !> may be postmultiplied into input matrices U1, V1, or Q1. !>
| [in] | JOBU | !> JOBU is CHARACTER*1 !> = 'U': U must contain a unitary matrix U1 on entry, and !> the product U1*U is returned; !> = 'I': U is initialized to the unit matrix, and the !> unitary matrix U is returned; !> = 'N': U is not computed. !> |
| [in] | JOBV | !> JOBV is CHARACTER*1 !> = 'V': V must contain a unitary matrix V1 on entry, and !> the product V1*V is returned; !> = 'I': V is initialized to the unit matrix, and the !> unitary matrix V is returned; !> = 'N': V is not computed. !> |
| [in] | JOBQ | !> JOBQ is CHARACTER*1 !> = 'Q': Q must contain a unitary matrix Q1 on entry, and !> the product Q1*Q is returned; !> = 'I': Q is initialized to the unit matrix, and the !> unitary matrix Q is returned; !> = 'N': Q is not computed. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | K | !> K is INTEGER !> |
| [in] | L | !> L is INTEGER !> !> K and L specify the subblocks in the input matrices A and B: !> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N) !> of A and B, whose GSVD is going to be computed by ZTGSJA. !> See Further Details. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular !> matrix R or part of R. See Purpose for details. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains !> a part of R. See Purpose for details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
| [in] | TOLA | !> TOLA is DOUBLE PRECISION !> |
| [in] | TOLB | !> TOLB is DOUBLE PRECISION !> !> TOLA and TOLB are the convergence criteria for the Jacobi- !> Kogbetliantz iteration procedure. Generally, they are the !> same as used in the preprocessing step, say !> TOLA = MAX(M,N)*norm(A)*MAZHEPS, !> TOLB = MAX(P,N)*norm(B)*MAZHEPS. !> |
| [out] | ALPHA | !> ALPHA is DOUBLE PRECISION array, dimension (N) !> |
| [out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (N) !> !> On exit, ALPHA and BETA contain the generalized singular !> value pairs of A and B; !> ALPHA(1:K) = 1, !> BETA(1:K) = 0, !> and if M-K-L >= 0, !> ALPHA(K+1:K+L) = diag(C), !> BETA(K+1:K+L) = diag(S), !> or if M-K-L < 0, !> ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 !> BETA(K+1:M) = S, BETA(M+1:K+L) = 1. !> Furthermore, if K+L < N, !> ALPHA(K+L+1:N) = 0 and !> BETA(K+L+1:N) = 0. !> |
| [in,out] | U | !> U is COMPLEX*16 array, dimension (LDU,M) !> On entry, if JOBU = 'U', U must contain a matrix U1 (usually !> the unitary matrix returned by ZGGSVP). !> On exit, !> if JOBU = 'I', U contains the unitary matrix U; !> if JOBU = 'U', U contains the product U1*U. !> If JOBU = 'N', U is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> |
| [in,out] | V | !> V is COMPLEX*16 array, dimension (LDV,P) !> On entry, if JOBV = 'V', V must contain a matrix V1 (usually !> the unitary matrix returned by ZGGSVP). !> On exit, !> if JOBV = 'I', V contains the unitary matrix V; !> if JOBV = 'V', V contains the product V1*V. !> If JOBV = 'N', V is not referenced. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually !> the unitary matrix returned by ZGGSVP). !> On exit, !> if JOBQ = 'I', Q contains the unitary matrix Q; !> if JOBQ = 'Q', Q contains the product Q1*Q. !> If JOBQ = 'N', Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | NCYCLE | !> NCYCLE is INTEGER !> The number of cycles required for convergence. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> = 1: the procedure does not converge after MAXIT cycles. !> |
!> MAXIT INTEGER !> MAXIT specifies the total loops that the iterative procedure !> may take. If after MAXIT cycles, the routine fails to !> converge, we return INFO = 1. !>
!> !> ZTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce !> min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L !> matrix B13 to the form: !> !> U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1, !> !> where U1, V1 and Q1 are unitary matrix. !> C1 and S1 are diagonal matrices satisfying !> !> C1**2 + S1**2 = I, !> !> and R1 is an L-by-L nonsingular upper triangular matrix. !>
Definition at line 376 of file ztgsja.f.
| subroutine ztgsna | ( | character | job, |
| character | howmny, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| double precision, dimension( * ) | s, | ||
| double precision, dimension( * ) | dif, | ||
| integer | mm, | ||
| integer | m, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZTGSNA
Download ZTGSNA + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTGSNA estimates reciprocal condition numbers for specified !> eigenvalues and/or eigenvectors of a matrix pair (A, B). !> !> (A, B) must be in generalized Schur canonical form, that is, A and !> B are both upper triangular. !>
| [in] | JOB | !> JOB is CHARACTER*1 !> Specifies whether condition numbers are required for !> eigenvalues (S) or eigenvectors (DIF): !> = 'E': for eigenvalues only (S); !> = 'V': for eigenvectors only (DIF); !> = 'B': for both eigenvalues and eigenvectors (S and DIF). !> |
| [in] | HOWMNY | !> HOWMNY is CHARACTER*1 !> = 'A': compute condition numbers for all eigenpairs; !> = 'S': compute condition numbers for selected eigenpairs !> specified by the array SELECT. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenpairs for which !> condition numbers are required. To select condition numbers !> for the corresponding j-th eigenvalue and/or eigenvector, !> SELECT(j) must be set to .TRUE.. !> If HOWMNY = 'A', SELECT is not referenced. !> |
| [in] | N | !> N is INTEGER !> The order of the square matrix pair (A, B). N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The upper triangular matrix A in the pair (A,B). !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> The upper triangular matrix B in the pair (A, B). !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,M) !> IF JOB = 'E' or 'B', VL must contain left eigenvectors of !> (A, B), corresponding to the eigenpairs specified by HOWMNY !> and SELECT. The eigenvectors must be stored in consecutive !> columns of VL, as returned by ZTGEVC. !> If JOB = 'V', VL is not referenced. !> |
| [in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. LDVL >= 1; and !> If JOB = 'E' or 'B', LDVL >= N. !> |
| [in] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,M) !> IF JOB = 'E' or 'B', VR must contain right eigenvectors of !> (A, B), corresponding to the eigenpairs specified by HOWMNY !> and SELECT. The eigenvectors must be stored in consecutive !> columns of VR, as returned by ZTGEVC. !> If JOB = 'V', VR is not referenced. !> |
| [in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. LDVR >= 1; !> If JOB = 'E' or 'B', LDVR >= N. !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (MM) !> If JOB = 'E' or 'B', the reciprocal condition numbers of the !> selected eigenvalues, stored in consecutive elements of the !> array. !> If JOB = 'V', S is not referenced. !> |
| [out] | DIF | !> DIF is DOUBLE PRECISION array, dimension (MM) !> If JOB = 'V' or 'B', the estimated reciprocal condition !> numbers of the selected eigenvectors, stored in consecutive !> elements of the array. !> If the eigenvalues cannot be reordered to compute DIF(j), !> DIF(j) is set to 0; this can only occur when the true value !> would be very small anyway. !> For each eigenvalue/vector specified by SELECT, DIF stores !> a Frobenius norm-based estimate of Difl. !> If JOB = 'E', DIF is not referenced. !> |
| [in] | MM | !> MM is INTEGER !> The number of elements in the arrays S and DIF. MM >= M. !> |
| [out] | M | !> M is INTEGER !> The number of elements of the arrays S and DIF used to store !> the specified condition numbers; for each selected eigenvalue !> one element is used. If HOWMNY = 'A', M is set to N. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N). !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N+2) !> If JOB = 'E', IWORK is not referenced. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: Successful exit !> < 0: If INFO = -i, the i-th argument had an illegal value !> |
!> !> The reciprocal of the condition number of the i-th generalized !> eigenvalue w = (a, b) is defined as !> !> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v)) !> !> where u and v are the right and left eigenvectors of (A, B) !> corresponding to w; |z| denotes the absolute value of the complex !> number, and norm(u) denotes the 2-norm of the vector u. The pair !> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the !> matrix pair (A, B). If both a and b equal zero, then (A,B) is !> singular and S(I) = -1 is returned. !> !> An approximate error bound on the chordal distance between the i-th !> computed generalized eigenvalue w and the corresponding exact !> eigenvalue lambda is !> !> chord(w, lambda) <= EPS * norm(A, B) / S(I), !> !> where EPS is the machine precision. !> !> The reciprocal of the condition number of the right eigenvector u !> and left eigenvector v corresponding to the generalized eigenvalue w !> is defined as follows. Suppose !> !> (A, B) = ( a * ) ( b * ) 1 !> ( 0 A22 ),( 0 B22 ) n-1 !> 1 n-1 1 n-1 !> !> Then the reciprocal condition number DIF(I) is !> !> Difl[(a, b), (A22, B22)] = sigma-min( Zl ) !> !> where sigma-min(Zl) denotes the smallest singular value of !> !> Zl = [ kron(a, In-1) -kron(1, A22) ] !> [ kron(b, In-1) -kron(1, B22) ]. !> !> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate !> transpose of X. kron(X, Y) is the Kronecker product between the !> matrices X and Y. !> !> We approximate the smallest singular value of Zl with an upper !> bound. This is done by ZLATDF. !> !> An approximate error bound for a computed eigenvector VL(i) or !> VR(i) is given by !> !> EPS * norm(A, B) / DIF(i). !> !> See ref. [2-3] for more details and further references. !>
!> !> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the !> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in !> M.S. Moonen et al (eds), Linear Algebra for Large Scale and !> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. !> !> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified !> Eigenvalues of a Regular Matrix Pair (A, B) and Condition !> Estimation: Theory, Algorithms and Software, Report !> UMINF - 94.04, Department of Computing Science, Umea University, !> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. !> To appear in Numerical Algorithms, 1996. !> !> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software !> for Solving the Generalized Sylvester Equation and Estimating the !> Separation between Regular Matrix Pairs, Report UMINF - 93.23, !> Department of Computing Science, Umea University, S-901 87 Umea, !> Sweden, December 1993, Revised April 1994, Also as LAPACK Working !> Note 75. !> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. !>
Definition at line 308 of file ztgsna.f.
| subroutine ztpcon | ( | character | norm, |
| character | uplo, | ||
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTPCON
Download ZTPCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPCON estimates the reciprocal of the condition number of a packed !> triangular matrix A, in either the 1-norm or the infinity-norm. !> !> The norm of A is computed and an estimate is obtained for !> norm(inv(A)), then the reciprocal of the condition number is !> computed as !> RCOND = 1 / ( norm(A) * norm(inv(A)) ). !>
| [in] | NORM | !> NORM is CHARACTER*1 !> Specifies whether the 1-norm condition number or the !> infinity-norm condition number is required: !> = '1' or 'O': 1-norm; !> = 'I': Infinity-norm. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(norm(A) * norm(inv(A))). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 128 of file ztpcon.f.
| subroutine ztpmqrt | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| integer | l, | ||
| integer | nb, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZTPMQRT
Download ZTPMQRT + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPMQRT applies a complex orthogonal matrix Q obtained from a !> complex block reflector H to a general !> complex matrix C, which consists of two blocks A and B. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix B. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix B. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> |
| [in] | L | !> L is INTEGER !> The order of the trapezoidal part of V. !> K >= L >= 0. See Further Details. !> |
| [in] | NB | !> NB is INTEGER !> The block size used for the storage of T. K >= NB >= 1. !> This must be the same value of NB used to generate T !> in CTPQRT. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> CTPQRT in B. See Further Details. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. !> If SIDE = 'L', LDV >= max(1,M); !> if SIDE = 'R', LDV >= max(1,N). !> |
| [in] | T | !> T is COMPLEX*16 array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by CTPQRT, stored as a NB-by-K matrix. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension !> (LDA,N) if SIDE = 'L' or !> (LDA,K) if SIDE = 'R' !> On entry, the K-by-N or M-by-K matrix A. !> On exit, A is overwritten by the corresponding block of !> Q*C or Q**H*C or C*Q or C*Q**H. See Further Details. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDC >= max(1,K); !> If SIDE = 'R', LDC >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the M-by-N matrix B. !> On exit, B is overwritten by the corresponding block of !> Q*C or Q**H*C or C*Q or C*Q**H. See Further Details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. !> LDB >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array. The dimension of WORK is !> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The columns of the pentagonal matrix V contain the elementary reflectors !> H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a !> trapezoidal block V2: !> !> V = [V1] !> [V2]. !> !> The size of the trapezoidal block V2 is determined by the parameter L, !> where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L !> rows of a K-by-K upper triangular matrix. If L=K, V2 is upper triangular; !> if L=0, there is no trapezoidal block, hence V = V1 is rectangular. !> !> If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is M-by-K. !> [B] !> !> If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is N-by-K. !> !> The complex orthogonal matrix Q is formed from V and T. !> !> If TRANS='N' and SIDE='L', C is on exit replaced with Q * C. !> !> If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C. !> !> If TRANS='N' and SIDE='R', C is on exit replaced with C * Q. !> !> If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H. !>
Definition at line 214 of file ztpmqrt.f.
| subroutine ztpqrt | ( | integer | m, |
| integer | n, | ||
| integer | l, | ||
| integer | nb, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZTPQRT
Download ZTPQRT + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPQRT computes a blocked QR factorization of a complex !> matrix C, which is composed of a !> triangular block A and pentagonal block B, using the compact !> WY representation for Q. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix B. !> M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix B, and the order of the !> triangular matrix A. !> N >= 0. !> |
| [in] | L | !> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !> |
| [in] | NB | !> NB is INTEGER !> The block size to be used in the blocked QR. N >= NB >= 1. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See Further Details. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NB*N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> !> The number of blocks is B = ceiling(N/NB), where each !> block is of order NB except for the last block, which is of order !> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block !> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB !> for the last block) T's are stored in the NB-by-N matrix T as !> !> T = [T1 T2 ... TB]. !>
Definition at line 187 of file ztpqrt.f.
| subroutine ztpqrt2 | ( | integer | m, |
| integer | n, | ||
| integer | l, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| integer | info ) |
ZTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Download ZTPQRT2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPQRT2 computes a QR factorization of a complex !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
| [in] | M | !> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !> |
| [in] | L | !> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W * T * W**H !> !> where W**H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 172 of file ztpqrt2.f.
| subroutine ztprfs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTPRFS
Download ZTPRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular packed !> coefficient matrix. !> !> The solution matrix X must be computed by ZTPTRS or some other !> means before entering this routine. ZTPRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 172 of file ztprfs.f.
| subroutine ztptri | ( | character | uplo, |
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| integer | info ) |
ZTPTRI
Download ZTPTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPTRI computes the inverse of a complex upper or lower triangular !> matrix A stored in packed format. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangular matrix A, stored !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. !> See below for further details. !> On exit, the (triangular) inverse of the original matrix, in !> the same packed storage format. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, A(i,i) is exactly zero. The triangular !> matrix is singular and its inverse can not be computed. !> |
!> !> A triangular matrix A can be transferred to packed storage using one !> of the following program segments: !> !> UPLO = 'U': UPLO = 'L': !> !> JC = 1 JC = 1 !> DO 2 J = 1, N DO 2 J = 1, N !> DO 1 I = 1, J DO 1 I = J, N !> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) !> 1 CONTINUE 1 CONTINUE !> JC = JC + J JC = JC + N - J + 1 !> 2 CONTINUE 2 CONTINUE !>
Definition at line 116 of file ztptri.f.
| subroutine ztptrs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZTPTRS
Download ZTPTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular matrix of order N stored in packed format, !> and B is an N-by-NRHS matrix. A check is made to verify that A is !> nonsingular. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, if INFO = 0, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is zero, !> indicating that the matrix is singular and the !> solutions X have not been computed. !> |
Definition at line 129 of file ztptrs.f.
| subroutine ztpttf | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: * ) | ap, | ||
| complex*16, dimension( 0: * ) | arf, | ||
| integer | info ) |
ZTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
Download ZTPTTF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPTTF copies a triangular matrix A from standard packed format (TP) !> to rectangular full packed format (TF). !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': ARF in Normal format is wanted; !> = 'C': ARF in Conjugate-transpose format is wanted. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On entry, the upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [out] | ARF | !> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On exit, the upper or lower triangular matrix A stored in !> RFP format. For a further discussion see Notes below. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 206 of file ztpttf.f.
| subroutine ztpttr | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| integer | info ) |
ZTPTTR copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).
Download ZTPTTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTPTTR copies a triangular matrix A from standard packed format (TP) !> to standard full format (TR). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular. !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On entry, the upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension ( LDA, N ) !> On exit, the triangular matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 103 of file ztpttr.f.
| subroutine ztrcon | ( | character | norm, |
| character | uplo, | ||
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision | rcond, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTRCON
Download ZTRCON + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRCON estimates the reciprocal of the condition number of a !> triangular matrix A, in either the 1-norm or the infinity-norm. !> !> The norm of A is computed and an estimate is obtained for !> norm(inv(A)), then the reciprocal of the condition number is !> computed as !> RCOND = 1 / ( norm(A) * norm(inv(A)) ). !>
| [in] | NORM | !> NORM is CHARACTER*1 !> Specifies whether the 1-norm condition number or the !> infinity-norm condition number is required: !> = '1' or 'O': 1-norm; !> = 'I': Infinity-norm. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | RCOND | !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(norm(A) * norm(inv(A))). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 135 of file ztrcon.f.
| subroutine ztrevc | ( | character | side, |
| character | howmny, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| integer | mm, | ||
| integer | m, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTREVC
Download ZTREVC + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTREVC computes some or all of the right and/or left eigenvectors of !> a complex upper triangular matrix T. !> Matrices of this type are produced by the Schur factorization of !> a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. !> !> The right eigenvector x and the left eigenvector y of T corresponding !> to an eigenvalue w are defined by: !> !> T*x = w*x, (y**H)*T = w*(y**H) !> !> where y**H denotes the conjugate transpose of the vector y. !> The eigenvalues are not input to this routine, but are read directly !> from the diagonal of T. !> !> This routine returns the matrices X and/or Y of right and left !> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an !> input matrix. If Q is the unitary factor that reduces a matrix A to !> Schur form T, then Q*X and Q*Y are the matrices of right and left !> eigenvectors of A. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !> |
| [in] | HOWMNY | !> HOWMNY is CHARACTER*1 !> = 'A': compute all right and/or left eigenvectors; !> = 'B': compute all right and/or left eigenvectors, !> backtransformed using the matrices supplied in !> VR and/or VL; !> = 'S': compute selected right and/or left eigenvectors, !> as indicated by the logical array SELECT. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenvectors to be !> computed. !> The eigenvector corresponding to the j-th eigenvalue is !> computed if SELECT(j) = .TRUE.. !> Not referenced if HOWMNY = 'A' or 'B'. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix T. N >= 0. !> |
| [in,out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular matrix T. T is modified, but restored !> on exit. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
| [in,out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,MM) !> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'L' or 'B', VL contains: !> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*Y; !> if HOWMNY = 'S', the left eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VL, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'R'. !> |
| [in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. LDVL >= 1, and if !> SIDE = 'L' or 'B', LDVL >= N. !> |
| [in,out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,MM) !> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'R' or 'B', VR contains: !> if HOWMNY = 'A', the matrix X of right eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*X; !> if HOWMNY = 'S', the right eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VR, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'L'. !> |
| [in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. LDVR >= 1, and if !> SIDE = 'R' or 'B'; LDVR >= N. !> |
| [in] | MM | !> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !> |
| [out] | M | !> M is INTEGER !> The number of columns in the arrays VL and/or VR actually !> used to store the eigenvectors. If HOWMNY = 'A' or 'B', M !> is set to N. Each selected eigenvector occupies one !> column. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The algorithm used in this program is basically backward (forward) !> substitution, with scaling to make the the code robust against !> possible overflow. !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x| + |y|. !>
Definition at line 216 of file ztrevc.f.
| subroutine ztrevc3 | ( | character | side, |
| character | howmny, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| integer | mm, | ||
| integer | m, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer | info ) |
ZTREVC3
Download ZTREVC3 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTREVC3 computes some or all of the right and/or left eigenvectors of !> a complex upper triangular matrix T. !> Matrices of this type are produced by the Schur factorization of !> a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. !> !> The right eigenvector x and the left eigenvector y of T corresponding !> to an eigenvalue w are defined by: !> !> T*x = w*x, (y**H)*T = w*(y**H) !> !> where y**H denotes the conjugate transpose of the vector y. !> The eigenvalues are not input to this routine, but are read directly !> from the diagonal of T. !> !> This routine returns the matrices X and/or Y of right and left !> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an !> input matrix. If Q is the unitary factor that reduces a matrix A to !> Schur form T, then Q*X and Q*Y are the matrices of right and left !> eigenvectors of A. !> !> This uses a Level 3 BLAS version of the back transformation. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !> |
| [in] | HOWMNY | !> HOWMNY is CHARACTER*1 !> = 'A': compute all right and/or left eigenvectors; !> = 'B': compute all right and/or left eigenvectors, !> backtransformed using the matrices supplied in !> VR and/or VL; !> = 'S': compute selected right and/or left eigenvectors, !> as indicated by the logical array SELECT. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenvectors to be !> computed. !> The eigenvector corresponding to the j-th eigenvalue is !> computed if SELECT(j) = .TRUE.. !> Not referenced if HOWMNY = 'A' or 'B'. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix T. N >= 0. !> |
| [in,out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular matrix T. T is modified, but restored !> on exit. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
| [in,out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,MM) !> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'L' or 'B', VL contains: !> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*Y; !> if HOWMNY = 'S', the left eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VL, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'R'. !> |
| [in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. !> |
| [in,out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,MM) !> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'R' or 'B', VR contains: !> if HOWMNY = 'A', the matrix X of right eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*X; !> if HOWMNY = 'S', the right eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VR, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'L'. !> |
| [in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. !> |
| [in] | MM | !> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !> |
| [out] | M | !> M is INTEGER !> The number of columns in the arrays VL and/or VR actually !> used to store the eigenvectors. !> If HOWMNY = 'A' or 'B', M is set to N. !> Each selected eigenvector occupies one column. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of array WORK. LWORK >= max(1,2*N). !> For optimum performance, LWORK >= N + 2*N*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (LRWORK) !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The dimension of array RWORK. LRWORK >= max(1,N). !> !> If LRWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the RWORK array, returns !> this value as the first entry of the RWORK array, and no error !> message related to LRWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The algorithm used in this program is basically backward (forward) !> substitution, with scaling to make the the code robust against !> possible overflow. !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x| + |y|. !>
Definition at line 242 of file ztrevc3.f.
| subroutine ztrexc | ( | character | compq, |
| integer | n, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| integer | ifst, | ||
| integer | ilst, | ||
| integer | info ) |
ZTREXC
Download ZTREXC + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTREXC reorders the Schur factorization of a complex matrix !> A = Q*T*Q**H, so that the diagonal element of T with row index IFST !> is moved to row ILST. !> !> The Schur form T is reordered by a unitary similarity transformation !> Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by !> postmultplying it with Z. !>
| [in] | COMPQ | !> COMPQ is CHARACTER*1 !> = 'V': update the matrix Q of Schur vectors; !> = 'N': do not update Q. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix T. N >= 0. !> If N == 0 arguments ILST and IFST may be any value. !> |
| [in,out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> On entry, the upper triangular matrix T. !> On exit, the reordered upper triangular matrix. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, if COMPQ = 'V', the matrix Q of Schur vectors. !> On exit, if COMPQ = 'V', Q has been postmultiplied by the !> unitary transformation matrix Z which reorders T. !> If COMPQ = 'N', Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= 1, and if !> COMPQ = 'V', LDQ >= max(1,N). !> |
| [in] | IFST | !> IFST is INTEGER !> |
| [in] | ILST | !> ILST is INTEGER !> !> Specify the reordering of the diagonal elements of T: !> The element with row index IFST is moved to row ILST by a !> sequence of transpositions between adjacent elements. !> 1 <= IFST <= N; 1 <= ILST <= N. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 125 of file ztrexc.f.
| subroutine ztrrfs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| double precision, dimension( * ) | ferr, | ||
| double precision, dimension( * ) | berr, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTRRFS
Download ZTRRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular !> coefficient matrix. !> !> The solution matrix X must be computed by ZTRTRS or some other !> means before entering this routine. ZTRRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The solution matrix X. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
| [out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
| [out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 180 of file ztrrfs.f.
| subroutine ztrsen | ( | character | job, |
| character | compq, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( * ) | w, | ||
| integer | m, | ||
| double precision | s, | ||
| double precision | sep, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZTRSEN
Download ZTRSEN + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRSEN reorders the Schur factorization of a complex matrix !> A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in !> the leading positions on the diagonal of the upper triangular matrix !> T, and the leading columns of Q form an orthonormal basis of the !> corresponding right invariant subspace. !> !> Optionally the routine computes the reciprocal condition numbers of !> the cluster of eigenvalues and/or the invariant subspace. !>
| [in] | JOB | !> JOB is CHARACTER*1 !> Specifies whether condition numbers are required for the !> cluster of eigenvalues (S) or the invariant subspace (SEP): !> = 'N': none; !> = 'E': for eigenvalues only (S); !> = 'V': for invariant subspace only (SEP); !> = 'B': for both eigenvalues and invariant subspace (S and !> SEP). !> |
| [in] | COMPQ | !> COMPQ is CHARACTER*1 !> = 'V': update the matrix Q of Schur vectors; !> = 'N': do not update Q. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> SELECT specifies the eigenvalues in the selected cluster. To !> select the j-th eigenvalue, SELECT(j) must be set to .TRUE.. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix T. N >= 0. !> |
| [in,out] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> On entry, the upper triangular matrix T. !> On exit, T is overwritten by the reordered matrix T, with the !> selected eigenvalues as the leading diagonal elements. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
| [in,out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, if COMPQ = 'V', the matrix Q of Schur vectors. !> On exit, if COMPQ = 'V', Q has been postmultiplied by the !> unitary transformation matrix which reorders T; the leading M !> columns of Q form an orthonormal basis for the specified !> invariant subspace. !> If COMPQ = 'N', Q is not referenced. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. !> LDQ >= 1; and if COMPQ = 'V', LDQ >= N. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (N) !> The reordered eigenvalues of T, in the same order as they !> appear on the diagonal of T. !> |
| [out] | M | !> M is INTEGER !> The dimension of the specified invariant subspace. !> 0 <= M <= N. !> |
| [out] | S | !> S is DOUBLE PRECISION !> If JOB = 'E' or 'B', S is a lower bound on the reciprocal !> condition number for the selected cluster of eigenvalues. !> S cannot underestimate the true reciprocal condition number !> by more than a factor of sqrt(N). If M = 0 or N, S = 1. !> If JOB = 'N' or 'V', S is not referenced. !> |
| [out] | SEP | !> SEP is DOUBLE PRECISION !> If JOB = 'V' or 'B', SEP is the estimated reciprocal !> condition number of the specified invariant subspace. If !> M = 0 or N, SEP = norm(T). !> If JOB = 'N' or 'E', SEP is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If JOB = 'N', LWORK >= 1; !> if JOB = 'E', LWORK = max(1,M*(N-M)); !> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> ZTRSEN first collects the selected eigenvalues by computing a unitary !> transformation Z to move them to the top left corner of T. In other !> words, the selected eigenvalues are the eigenvalues of T11 in: !> !> Z**H * T * Z = ( T11 T12 ) n1 !> ( 0 T22 ) n2 !> n1 n2 !> !> where N = n1+n2. The first !> n1 columns of Z span the specified invariant subspace of T. !> !> If T has been obtained from the Schur factorization of a matrix !> A = Q*T*Q**H, then the reordered Schur factorization of A is given by !> A = (Q*Z)*(Z**H*T*Z)*(Q*Z)**H, and the first n1 columns of Q*Z span the !> corresponding invariant subspace of A. !> !> The reciprocal condition number of the average of the eigenvalues of !> T11 may be returned in S. S lies between 0 (very badly conditioned) !> and 1 (very well conditioned). It is computed as follows. First we !> compute R so that !> !> P = ( I R ) n1 !> ( 0 0 ) n2 !> n1 n2 !> !> is the projector on the invariant subspace associated with T11. !> R is the solution of the Sylvester equation: !> !> T11*R - R*T22 = T12. !> !> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote !> the two-norm of M. Then S is computed as the lower bound !> !> (1 + F-norm(R)**2)**(-1/2) !> !> on the reciprocal of 2-norm(P), the true reciprocal condition number. !> S cannot underestimate 1 / 2-norm(P) by more than a factor of !> sqrt(N). !> !> An approximate error bound for the computed average of the !> eigenvalues of T11 is !> !> EPS * norm(T) / S !> !> where EPS is the machine precision. !> !> The reciprocal condition number of the right invariant subspace !> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. !> SEP is defined as the separation of T11 and T22: !> !> sep( T11, T22 ) = sigma-min( C ) !> !> where sigma-min(C) is the smallest singular value of the !> n1*n2-by-n1*n2 matrix !> !> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) !> !> I(m) is an m by m identity matrix, and kprod denotes the Kronecker !> product. We estimate sigma-min(C) by the reciprocal of an estimate of !> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) !> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). !> !> When SEP is small, small changes in T can cause large changes in !> the invariant subspace. An approximate bound on the maximum angular !> error in the computed right invariant subspace is !> !> EPS * norm(T) / SEP !>
Definition at line 262 of file ztrsen.f.
| subroutine ztrsna | ( | character | job, |
| character | howmny, | ||
| logical, dimension( * ) | select, | ||
| integer | n, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| double precision, dimension( * ) | s, | ||
| double precision, dimension( * ) | sep, | ||
| integer | mm, | ||
| integer | m, | ||
| complex*16, dimension( ldwork, * ) | work, | ||
| integer | ldwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZTRSNA
Download ZTRSNA + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRSNA estimates reciprocal condition numbers for specified !> eigenvalues and/or right eigenvectors of a complex upper triangular !> matrix T (or of any matrix Q*T*Q**H with Q unitary). !>
| [in] | JOB | !> JOB is CHARACTER*1 !> Specifies whether condition numbers are required for !> eigenvalues (S) or eigenvectors (SEP): !> = 'E': for eigenvalues only (S); !> = 'V': for eigenvectors only (SEP); !> = 'B': for both eigenvalues and eigenvectors (S and SEP). !> |
| [in] | HOWMNY | !> HOWMNY is CHARACTER*1 !> = 'A': compute condition numbers for all eigenpairs; !> = 'S': compute condition numbers for selected eigenpairs !> specified by the array SELECT. !> |
| [in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenpairs for which !> condition numbers are required. To select condition numbers !> for the j-th eigenpair, SELECT(j) must be set to .TRUE.. !> If HOWMNY = 'A', SELECT is not referenced. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix T. N >= 0. !> |
| [in] | T | !> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular matrix T. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
| [in] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,M) !> If JOB = 'E' or 'B', VL must contain left eigenvectors of T !> (or of any Q*T*Q**H with Q unitary), corresponding to the !> eigenpairs specified by HOWMNY and SELECT. The eigenvectors !> must be stored in consecutive columns of VL, as returned by !> ZHSEIN or ZTREVC. !> If JOB = 'V', VL is not referenced. !> |
| [in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. !> |
| [in] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,M) !> If JOB = 'E' or 'B', VR must contain right eigenvectors of T !> (or of any Q*T*Q**H with Q unitary), corresponding to the !> eigenpairs specified by HOWMNY and SELECT. The eigenvectors !> must be stored in consecutive columns of VR, as returned by !> ZHSEIN or ZTREVC. !> If JOB = 'V', VR is not referenced. !> |
| [in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (MM) !> If JOB = 'E' or 'B', the reciprocal condition numbers of the !> selected eigenvalues, stored in consecutive elements of the !> array. Thus S(j), SEP(j), and the j-th columns of VL and VR !> all correspond to the same eigenpair (but not in general the !> j-th eigenpair, unless all eigenpairs are selected). !> If JOB = 'V', S is not referenced. !> |
| [out] | SEP | !> SEP is DOUBLE PRECISION array, dimension (MM) !> If JOB = 'V' or 'B', the estimated reciprocal condition !> numbers of the selected eigenvectors, stored in consecutive !> elements of the array. !> If JOB = 'E', SEP is not referenced. !> |
| [in] | MM | !> MM is INTEGER !> The number of elements in the arrays S (if JOB = 'E' or 'B') !> and/or SEP (if JOB = 'V' or 'B'). MM >= M. !> |
| [out] | M | !> M is INTEGER !> The number of elements of the arrays S and/or SEP actually !> used to store the estimated condition numbers. !> If HOWMNY = 'A', M is set to N. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LDWORK,N+6) !> If JOB = 'E', WORK is not referenced. !> |
| [in] | LDWORK | !> LDWORK is INTEGER !> The leading dimension of the array WORK. !> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> If JOB = 'E', RWORK is not referenced. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The reciprocal of the condition number of an eigenvalue lambda is !> defined as !> !> S(lambda) = |v**H*u| / (norm(u)*norm(v)) !> !> where u and v are the right and left eigenvectors of T corresponding !> to lambda; v**H denotes the conjugate transpose of v, and norm(u) !> denotes the Euclidean norm. These reciprocal condition numbers always !> lie between zero (very badly conditioned) and one (very well !> conditioned). If n = 1, S(lambda) is defined to be 1. !> !> An approximate error bound for a computed eigenvalue W(i) is given by !> !> EPS * norm(T) / S(i) !> !> where EPS is the machine precision. !> !> The reciprocal of the condition number of the right eigenvector u !> corresponding to lambda is defined as follows. Suppose !> !> T = ( lambda c ) !> ( 0 T22 ) !> !> Then the reciprocal condition number is !> !> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) !> !> where sigma-min denotes the smallest singular value. We approximate !> the smallest singular value by the reciprocal of an estimate of the !> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is !> defined to be abs(T(1,1)). !> !> An approximate error bound for a computed right eigenvector VR(i) !> is given by !> !> EPS * norm(T) / SEP(i) !>
Definition at line 246 of file ztrsna.f.
| subroutine ztrti2 | ( | character | uplo, |
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| integer | info ) |
ZTRTI2 computes the inverse of a triangular matrix (unblocked algorithm).
Download ZTRTI2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRTI2 computes the inverse of a complex upper or lower triangular !> matrix. !> !> This is the Level 2 BLAS version of the algorithm. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the triangular matrix A. If UPLO = 'U', the !> leading n by n upper triangular part of the array A contains !> the upper triangular matrix, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading n by n lower triangular part of the array A contains !> the lower triangular matrix, and the strictly upper !> triangular part of A is not referenced. If DIAG = 'U', the !> diagonal elements of A are also not referenced and are !> assumed to be 1. !> !> On exit, the (triangular) inverse of the original matrix, in !> the same storage format. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> |
Definition at line 109 of file ztrti2.f.
| subroutine ztrtri | ( | character | uplo, |
| character | diag, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| integer | info ) |
ZTRTRI
Download ZTRTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRTRI computes the inverse of a complex upper or lower triangular !> matrix A. !> !> This is the Level 3 BLAS version of the algorithm. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the triangular matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of the array A contains !> the upper triangular matrix, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of the array A contains !> the lower triangular matrix, and the strictly upper !> triangular part of A is not referenced. If DIAG = 'U', the !> diagonal elements of A are also not referenced and are !> assumed to be 1. !> On exit, the (triangular) inverse of the original matrix, in !> the same storage format. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, A(i,i) is exactly zero. The triangular !> matrix is singular and its inverse can not be computed. !> |
Definition at line 108 of file ztrtri.f.
| subroutine ztrtrs | ( | character | uplo, |
| character | trans, | ||
| character | diag, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer | info ) |
ZTRTRS
Download ZTRTRS + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular matrix of order N, and B is an N-by-NRHS !> matrix. A check is made to verify that A is nonsingular. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, if INFO = 0, the solution matrix X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is zero, !> indicating that the matrix is singular and the solutions !> X have not been computed. !> |
Definition at line 138 of file ztrtrs.f.
| subroutine ztrttf | ( | character | transr, |
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( 0: lda-1, 0: * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( 0: * ) | arf, | ||
| integer | info ) |
ZTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
Download ZTRTTF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRTTF copies a triangular matrix A from standard full format (TR) !> to rectangular full packed format (TF) . !>
| [in] | TRANSR | !> TRANSR is CHARACTER*1 !> = 'N': ARF in Normal mode is wanted; !> = 'C': ARF in Conjugate Transpose mode is wanted; !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension ( LDA, N ) !> On entry, the triangular matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of the array A contains !> the upper triangular matrix, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of the array A contains !> the lower triangular matrix, and the strictly upper !> triangular part of A is not referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the matrix A. LDA >= max(1,N). !> |
| [out] | ARF | !> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On exit, the upper or lower triangular matrix A stored in !> RFP format. For a further discussion see Notes below. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 215 of file ztrttf.f.
| subroutine ztrttp | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | ap, | ||
| integer | info ) |
ZTRTTP copies a triangular matrix from the standard full format (TR) to the standard packed format (TP).
Download ZTRTTP + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTRTTP copies a triangular matrix A from full format (TR) to standard !> packed format (TP). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
| [in] | N | !> N is INTEGER !> The order of the matrices AP and A. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the triangular matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [out] | AP | !> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ), !> On exit, the upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 103 of file ztrttp.f.
| subroutine ztzrqf | ( | integer | m, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| integer | info ) |
ZTZRQF
Download ZTZRQF + dependencies [TGZ] [ZIP] [TXT]
!> !> This routine is deprecated and has been replaced by routine ZTZRZF. !> !> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A !> to upper triangular form by means of unitary transformations. !> !> The upper trapezoidal matrix A is factored as !> !> A = ( R 0 ) * Z, !> !> where Z is an N-by-N unitary matrix and R is an M-by-M upper !> triangular matrix. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= M. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements M+1 to !> N of the first M rows of A, with the array TAU, represent the !> unitary matrix Z as a product of M elementary reflectors. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The factorization is obtained by Householder's method. The kth !> transformation matrix, Z( k ), whose conjugate transpose is used to !> introduce zeros into the (m - k + 1)th row of A, is given in the form !> !> Z( k ) = ( I 0 ), !> ( 0 T( k ) ) !> !> where !> !> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), !> ( 0 ) !> ( z( k ) ) !> !> tau is a scalar and z( k ) is an ( n - m ) element vector. !> tau and z( k ) are chosen to annihilate the elements of the kth row !> of X. !> !> The scalar tau is returned in the kth element of TAU and the vector !> u( k ) in the kth row of A, such that the elements of z( k ) are !> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in !> the upper triangular part of A. !> !> Z is given by !> !> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). !>
Definition at line 137 of file ztzrqf.f.
| subroutine ztzrzf | ( | integer | m, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZTZRZF
Download ZTZRZF + dependencies [TGZ] [ZIP] [TXT]
!> !> ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A !> to upper triangular form by means of unitary transformations. !> !> The upper trapezoidal matrix A is factored as !> !> A = ( R 0 ) * Z, !> !> where Z is an N-by-N unitary matrix and R is an M-by-M upper !> triangular matrix. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= M. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements M+1 to !> N of the first M rows of A, with the array TAU, represent the !> unitary matrix Z as a product of M elementary reflectors. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | TAU | !> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The N-by-N matrix Z can be computed by !> !> Z = Z(1)*Z(2)* ... *Z(M) !> !> where each N-by-N Z(k) is given by !> !> Z(k) = I - tau(k)*v(k)*v(k)**H !> !> with v(k) is the kth row vector of the M-by-N matrix !> !> V = ( I A(:,M+1:N) ) !> !> I is the M-by-M identity matrix, A(:,M+1:N) !> is the output stored in A on exit from ZTZRZF, !> and tau(k) is the kth element of the array TAU. !> !>
Definition at line 150 of file ztzrzf.f.
| subroutine zunbdb | ( | character | trans, |
| character | signs, | ||
| integer | m, | ||
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension( ldx11, * ) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension( ldx12, * ) | x12, | ||
| integer | ldx12, | ||
| complex*16, dimension( ldx21, * ) | x21, | ||
| integer | ldx21, | ||
| complex*16, dimension( ldx22, * ) | x22, | ||
| integer | ldx22, | ||
| double precision, dimension( * ) | theta, | ||
| double precision, dimension( * ) | phi, | ||
| complex*16, dimension( * ) | taup1, | ||
| complex*16, dimension( * ) | taup2, | ||
| complex*16, dimension( * ) | tauq1, | ||
| complex*16, dimension( * ) | tauq2, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB
Download ZUNBDB + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M !> partitioned unitary matrix X: !> !> [ B11 | B12 0 0 ] !> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H !> X = [-----------] = [---------] [----------------] [---------] . !> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] !> [ 0 | 0 0 I ] !> !> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is !> not the case, then X must be transposed and/or permuted. This can be !> done in constant time using the TRANS and SIGNS options. See ZUNCSD !> for details.) !> !> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- !> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are !> represented implicitly by Householder vectors. !> !> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented !> implicitly by angles THETA, PHI. !>
| [in] | TRANS | !> TRANS is CHARACTER !> = 'T': X, U1, U2, V1T, and V2T are stored in row-major !> order; !> otherwise: X, U1, U2, V1T, and V2T are stored in column- !> major order. !> |
| [in] | SIGNS | !> SIGNS is CHARACTER !> = 'O': The lower-left block is made nonpositive (the !> convention); !> otherwise: The upper-right block is made nonpositive (the !> convention). !> |
| [in] | M | !> M is INTEGER !> The number of rows and columns in X. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11 and X12. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= !> MIN(P,M-P,M-Q). !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top-left block of the unitary matrix to be !> reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the columns of tril(X11) specify reflectors for P1, !> the rows of triu(X11,1) specify reflectors for Q1; !> else TRANS = 'T', and !> the rows of triu(X11) specify reflectors for P1, !> the columns of tril(X11,-1) specify reflectors for Q1. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. If TRANS = 'N', then LDX11 >= !> P; else LDX11 >= Q. !> |
| [in,out] | X12 | !> X12 is COMPLEX*16 array, dimension (LDX12,M-Q) !> On entry, the top-right block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the rows of triu(X12) specify the first P reflectors for !> Q2; !> else TRANS = 'T', and !> the columns of tril(X12) specify the first P reflectors !> for Q2. !> |
| [in] | LDX12 | !> LDX12 is INTEGER !> The leading dimension of X12. If TRANS = 'N', then LDX12 >= !> P; else LDX11 >= M-Q. !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom-left block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the columns of tril(X21) specify reflectors for P2; !> else TRANS = 'T', and !> the rows of triu(X21) specify reflectors for P2. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. If TRANS = 'N', then LDX21 >= !> M-P; else LDX21 >= Q. !> |
| [in,out] | X22 | !> X22 is COMPLEX*16 array, dimension (LDX22,M-Q) !> On entry, the bottom-right block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last !> M-P-Q reflectors for Q2, !> else TRANS = 'T', and !> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last !> M-P-Q reflectors for P2. !> |
| [in] | LDX22 | !> LDX22 is INTEGER !> The leading dimension of X22. If TRANS = 'N', then LDX22 >= !> M-P; else LDX22 >= M-Q. !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B12, B21, B22 can !> be computed from the angles THETA and PHI. See Further !> Details. !> |
| [out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B12, B21, B22 can !> be computed from the angles THETA and PHI. See Further !> Details. !> |
| [out] | TAUP1 | !> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !> |
| [out] | TAUP2 | !> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !> |
| [out] | TAUQ1 | !> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !> |
| [out] | TAUQ2 | !> TAUQ2 is COMPLEX*16 array, dimension (M-Q) !> The scalar factors of the elementary reflectors that define !> Q2. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The bidiagonal blocks B11, B12, B21, and B22 are represented !> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., !> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are !> lower bidiagonal. Every entry in each bidiagonal band is a product !> of a sine or cosine of a THETA with a sine or cosine of a PHI. See !> [1] or ZUNCSD for details. !> !> P1, P2, Q1, and Q2 are represented as products of elementary !> reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2 !> using ZUNGQR and ZUNGLQ. !>
Definition at line 284 of file zunbdb.f.
| subroutine zunbdb1 | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension(ldx11,*) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension(ldx21,*) | x21, | ||
| integer | ldx21, | ||
| double precision, dimension(*) | theta, | ||
| double precision, dimension(*) | phi, | ||
| complex*16, dimension(*) | taup1, | ||
| complex*16, dimension(*) | taup2, | ||
| complex*16, dimension(*) | tauq1, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB1
Download ZUNBDB1 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny !> matrix X with orthonomal columns: !> !> [ B11 ] !> [ X11 ] [ P1 | ] [ 0 ] !> [-----] = [---------] [-----] Q1**T . !> [ X21 ] [ | P2 ] [ B21 ] !> [ 0 ] !> !> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P, !> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in !> which Q is not the minimum dimension. !> !> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), !> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by !> Householder vectors. !> !> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by !> angles THETA, PHI. !> !>
| [in] | M | !> M is INTEGER !> The number of rows X11 plus the number of rows in X21. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= !> MIN(P,M-P,M-Q). !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top block of the matrix X to be reduced. On !> exit, the columns of tril(X11) specify reflectors for P1 and !> the rows of triu(X11,1) specify reflectors for Q1. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= P. !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom block of the matrix X to be reduced. On !> exit, the columns of tril(X21) specify reflectors for P2. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. LDX21 >= M-P. !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | TAUP1 | !> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !> |
| [out] | TAUP2 | !> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !> |
| [out] | TAUQ1 | !> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The upper-bidiagonal blocks B11, B21 are represented implicitly by !> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry !> in each bidiagonal band is a product of a sine or cosine of a THETA !> with a sine or cosine of a PHI. See [1] or ZUNCSD for details. !> !> P1, P2, and Q1 are represented as products of elementary reflectors. !> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR !> and ZUNGLQ. !>
Definition at line 201 of file zunbdb1.f.
| subroutine zunbdb2 | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension(ldx11,*) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension(ldx21,*) | x21, | ||
| integer | ldx21, | ||
| double precision, dimension(*) | theta, | ||
| double precision, dimension(*) | phi, | ||
| complex*16, dimension(*) | taup1, | ||
| complex*16, dimension(*) | taup2, | ||
| complex*16, dimension(*) | tauq1, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB2
Download ZUNBDB2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny !> matrix X with orthonomal columns: !> !> [ B11 ] !> [ X11 ] [ P1 | ] [ 0 ] !> [-----] = [---------] [-----] Q1**T . !> [ X21 ] [ | P2 ] [ B21 ] !> [ 0 ] !> !> X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P, !> Q, or M-Q. Routines ZUNBDB1, ZUNBDB3, and ZUNBDB4 handle cases in !> which P is not the minimum dimension. !> !> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), !> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by !> Householder vectors. !> !> B11 and B12 are P-by-P bidiagonal matrices represented implicitly by !> angles THETA, PHI. !> !>
| [in] | M | !> M is INTEGER !> The number of rows X11 plus the number of rows in X21. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11. 0 <= P <= min(M-P,Q,M-Q). !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= M. !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top block of the matrix X to be reduced. On !> exit, the columns of tril(X11) specify reflectors for P1 and !> the rows of triu(X11,1) specify reflectors for Q1. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= P. !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom block of the matrix X to be reduced. On !> exit, the columns of tril(X21) specify reflectors for P2. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. LDX21 >= M-P. !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | TAUP1 | !> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !> |
| [out] | TAUP2 | !> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !> |
| [out] | TAUQ1 | !> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The upper-bidiagonal blocks B11, B21 are represented implicitly by !> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry !> in each bidiagonal band is a product of a sine or cosine of a THETA !> with a sine or cosine of a PHI. See [1] or ZUNCSD for details. !> !> P1, P2, and Q1 are represented as products of elementary reflectors. !> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR !> and ZUNGLQ. !>
Definition at line 199 of file zunbdb2.f.
| subroutine zunbdb3 | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension(ldx11,*) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension(ldx21,*) | x21, | ||
| integer | ldx21, | ||
| double precision, dimension(*) | theta, | ||
| double precision, dimension(*) | phi, | ||
| complex*16, dimension(*) | taup1, | ||
| complex*16, dimension(*) | taup2, | ||
| complex*16, dimension(*) | tauq1, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB3
Download ZUNBDB3 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny !> matrix X with orthonomal columns: !> !> [ B11 ] !> [ X11 ] [ P1 | ] [ 0 ] !> [-----] = [---------] [-----] Q1**T . !> [ X21 ] [ | P2 ] [ B21 ] !> [ 0 ] !> !> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P, !> Q, or M-Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB4 handle cases in !> which M-P is not the minimum dimension. !> !> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), !> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by !> Householder vectors. !> !> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented !> implicitly by angles THETA, PHI. !> !>
| [in] | M | !> M is INTEGER !> The number of rows X11 plus the number of rows in X21. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q). !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= M. !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top block of the matrix X to be reduced. On !> exit, the columns of tril(X11) specify reflectors for P1 and !> the rows of triu(X11,1) specify reflectors for Q1. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= P. !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom block of the matrix X to be reduced. On !> exit, the columns of tril(X21) specify reflectors for P2. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. LDX21 >= M-P. !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | TAUP1 | !> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !> |
| [out] | TAUP2 | !> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !> |
| [out] | TAUQ1 | !> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The upper-bidiagonal blocks B11, B21 are represented implicitly by !> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry !> in each bidiagonal band is a product of a sine or cosine of a THETA !> with a sine or cosine of a PHI. See [1] or ZUNCSD for details. !> !> P1, P2, and Q1 are represented as products of elementary reflectors. !> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR !> and ZUNGLQ. !>
Definition at line 199 of file zunbdb3.f.
| subroutine zunbdb4 | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension(ldx11,*) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension(ldx21,*) | x21, | ||
| integer | ldx21, | ||
| double precision, dimension(*) | theta, | ||
| double precision, dimension(*) | phi, | ||
| complex*16, dimension(*) | taup1, | ||
| complex*16, dimension(*) | taup2, | ||
| complex*16, dimension(*) | tauq1, | ||
| complex*16, dimension(*) | phantom, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB4
Download ZUNBDB4 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny !> matrix X with orthonomal columns: !> !> [ B11 ] !> [ X11 ] [ P1 | ] [ 0 ] !> [-----] = [---------] [-----] Q1**T . !> [ X21 ] [ | P2 ] [ B21 ] !> [ 0 ] !> !> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, !> M-P, or Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB3 handle cases in !> which M-Q is not the minimum dimension. !> !> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), !> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by !> Householder vectors. !> !> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented !> implicitly by angles THETA, PHI. !> !>
| [in] | M | !> M is INTEGER !> The number of rows X11 plus the number of rows in X21. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= M and !> M-Q <= min(P,M-P,Q). !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top block of the matrix X to be reduced. On !> exit, the columns of tril(X11) specify reflectors for P1 and !> the rows of triu(X11,1) specify reflectors for Q1. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= P. !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom block of the matrix X to be reduced. On !> exit, the columns of tril(X21) specify reflectors for P2. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. LDX21 >= M-P. !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | PHI | !> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B21 are defined by !> THETA and PHI. See Further Details. !> |
| [out] | TAUP1 | !> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !> |
| [out] | TAUP2 | !> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !> |
| [out] | TAUQ1 | !> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !> |
| [out] | PHANTOM | !> PHANTOM is COMPLEX*16 array, dimension (M) !> The routine computes an M-by-1 column vector Y that is !> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and !> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and !> Y(P+1:M), respectively. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The upper-bidiagonal blocks B11, B21 are represented implicitly by !> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry !> in each bidiagonal band is a product of a sine or cosine of a THETA !> with a sine or cosine of a PHI. See [1] or ZUNCSD for details. !> !> P1, P2, and Q1 are represented as products of elementary reflectors. !> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR !> and ZUNGLQ. !>
Definition at line 210 of file zunbdb4.f.
| subroutine zunbdb5 | ( | integer | m1, |
| integer | m2, | ||
| integer | n, | ||
| complex*16, dimension(*) | x1, | ||
| integer | incx1, | ||
| complex*16, dimension(*) | x2, | ||
| integer | incx2, | ||
| complex*16, dimension(ldq1,*) | q1, | ||
| integer | ldq1, | ||
| complex*16, dimension(ldq2,*) | q2, | ||
| integer | ldq2, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB5
Download ZUNBDB5 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB5 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] . !> [ Q2 ] !> The columns of Q must be orthonormal. !> !> If the projection is zero according to Kahan's !> criterion, then some other vector from the orthogonal complement !> is returned. This vector is chosen in an arbitrary but deterministic !> way. !> !>
| [in] | M1 | !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1. 0 <= M1. !> |
| [in] | M2 | !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2. 0 <= M2. !> |
| [in] | N | !> N is INTEGER !> The number of columns in Q1 and Q2. 0 <= N. !> |
| [in,out] | X1 | !> X1 is COMPLEX*16 array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized. !> On exit, the top part of the projected vector. !> |
| [in] | INCX1 | !> INCX1 is INTEGER !> Increment for entries of X1. !> |
| [in,out] | X2 | !> X2 is COMPLEX*16 array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized. On exit, the bottom part of the projected !> vector. !> |
| [in] | INCX2 | !> INCX2 is INTEGER !> Increment for entries of X2. !> |
| [in] | Q1 | !> Q1 is COMPLEX*16 array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix. !> |
| [in] | LDQ1 | !> LDQ1 is INTEGER !> The leading dimension of Q1. LDQ1 >= M1. !> |
| [in] | Q2 | !> Q2 is COMPLEX*16 array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix. !> |
| [in] | LDQ2 | !> LDQ2 is INTEGER !> The leading dimension of Q2. LDQ2 >= M2. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= N. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 154 of file zunbdb5.f.
| subroutine zunbdb6 | ( | integer | m1, |
| integer | m2, | ||
| integer | n, | ||
| complex*16, dimension(*) | x1, | ||
| integer | incx1, | ||
| complex*16, dimension(*) | x2, | ||
| integer | incx2, | ||
| complex*16, dimension(ldq1,*) | q1, | ||
| integer | ldq1, | ||
| complex*16, dimension(ldq2,*) | q2, | ||
| integer | ldq2, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNBDB6
Download ZUNBDB6 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNBDB6 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] . !> [ Q2 ] !> The columns of Q must be orthonormal. !> !> If the projection is zero according to Kahan's !> criterion, then the zero vector is returned. !> !>
| [in] | M1 | !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1. 0 <= M1. !> |
| [in] | M2 | !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2. 0 <= M2. !> |
| [in] | N | !> N is INTEGER !> The number of columns in Q1 and Q2. 0 <= N. !> |
| [in,out] | X1 | !> X1 is COMPLEX*16 array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized. !> On exit, the top part of the projected vector. !> |
| [in] | INCX1 | !> INCX1 is INTEGER !> Increment for entries of X1. !> |
| [in,out] | X2 | !> X2 is COMPLEX*16 array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized. On exit, the bottom part of the projected !> vector. !> |
| [in] | INCX2 | !> INCX2 is INTEGER !> Increment for entries of X2. !> |
| [in] | Q1 | !> Q1 is COMPLEX*16 array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix. !> |
| [in] | LDQ1 | !> LDQ1 is INTEGER !> The leading dimension of Q1. LDQ1 >= M1. !> |
| [in] | Q2 | !> Q2 is COMPLEX*16 array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix. !> |
| [in] | LDQ2 | !> LDQ2 is INTEGER !> The leading dimension of Q2. LDQ2 >= M2. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= N. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
Definition at line 152 of file zunbdb6.f.
| recursive subroutine zuncsd | ( | character | jobu1, |
| character | jobu2, | ||
| character | jobv1t, | ||
| character | jobv2t, | ||
| character | trans, | ||
| character | signs, | ||
| integer | m, | ||
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension( ldx11, * ) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension( ldx12, * ) | x12, | ||
| integer | ldx12, | ||
| complex*16, dimension( ldx21, * ) | x21, | ||
| integer | ldx21, | ||
| complex*16, dimension( ldx22, * ) | x22, | ||
| integer | ldx22, | ||
| double precision, dimension( * ) | theta, | ||
| complex*16, dimension( ldu1, * ) | u1, | ||
| integer | ldu1, | ||
| complex*16, dimension( ldu2, * ) | u2, | ||
| integer | ldu2, | ||
| complex*16, dimension( ldv1t, * ) | v1t, | ||
| integer | ldv1t, | ||
| complex*16, dimension( ldv2t, * ) | v2t, | ||
| integer | ldv2t, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZUNCSD
Download ZUNCSD + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNCSD computes the CS decomposition of an M-by-M partitioned !> unitary matrix X: !> !> [ I 0 0 | 0 0 0 ] !> [ 0 C 0 | 0 -S 0 ] !> [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H !> X = [-----------] = [---------] [---------------------] [---------] . !> [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] !> [ 0 S 0 | 0 C 0 ] !> [ 0 0 I | 0 0 0 ] !> !> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, !> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are !> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in !> which R = MIN(P,M-P,Q,M-Q). !>
| [in] | JOBU1 | !> JOBU1 is CHARACTER !> = 'Y': U1 is computed; !> otherwise: U1 is not computed. !> |
| [in] | JOBU2 | !> JOBU2 is CHARACTER !> = 'Y': U2 is computed; !> otherwise: U2 is not computed. !> |
| [in] | JOBV1T | !> JOBV1T is CHARACTER !> = 'Y': V1T is computed; !> otherwise: V1T is not computed. !> |
| [in] | JOBV2T | !> JOBV2T is CHARACTER !> = 'Y': V2T is computed; !> otherwise: V2T is not computed. !> |
| [in] | TRANS | !> TRANS is CHARACTER !> = 'T': X, U1, U2, V1T, and V2T are stored in row-major !> order; !> otherwise: X, U1, U2, V1T, and V2T are stored in column- !> major order. !> |
| [in] | SIGNS | !> SIGNS is CHARACTER !> = 'O': The lower-left block is made nonpositive (the !> convention); !> otherwise: The upper-right block is made nonpositive (the !> convention). !> |
| [in] | M | !> M is INTEGER !> The number of rows and columns in X. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11 and X12. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= M. !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= MAX(1,P). !> |
| [in,out] | X12 | !> X12 is COMPLEX*16 array, dimension (LDX12,M-Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX12 | !> LDX12 is INTEGER !> The leading dimension of X12. LDX12 >= MAX(1,P). !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X11. LDX21 >= MAX(1,M-P). !> |
| [in,out] | X22 | !> X22 is COMPLEX*16 array, dimension (LDX22,M-Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX22 | !> LDX22 is INTEGER !> The leading dimension of X11. LDX22 >= MAX(1,M-P). !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (R), in which R = !> MIN(P,M-P,Q,M-Q). !> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and !> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). !> |
| [out] | U1 | !> U1 is COMPLEX*16 array, dimension (LDU1,P) !> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. !> |
| [in] | LDU1 | !> LDU1 is INTEGER !> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= !> MAX(1,P). !> |
| [out] | U2 | !> U2 is COMPLEX*16 array, dimension (LDU2,M-P) !> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary !> matrix U2. !> |
| [in] | LDU2 | !> LDU2 is INTEGER !> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= !> MAX(1,M-P). !> |
| [out] | V1T | !> V1T is COMPLEX*16 array, dimension (LDV1T,Q) !> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary !> matrix V1**H. !> |
| [in] | LDV1T | !> LDV1T is INTEGER !> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= !> MAX(1,Q). !> |
| [out] | V2T | !> V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) !> If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary !> matrix V2**H. !> |
| [in] | LDV2T | !> LDV2T is INTEGER !> The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= !> MAX(1,M-Q). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the work array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. !> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), !> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), !> define the matrix in intermediate bidiagonal-block form !> remaining after nonconvergence. INFO specifies the number !> of nonzero PHI's. !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The dimension of the array RWORK. !> !> If LRWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the RWORK array, returns !> this value as the first entry of the work array, and no error !> message related to LRWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: ZBBCSD did not converge. See the description of RWORK !> above for details. !> |
Definition at line 314 of file zuncsd.f.
| subroutine zuncsd2by1 | ( | character | jobu1, |
| character | jobu2, | ||
| character | jobv1t, | ||
| integer | m, | ||
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension(ldx11,*) | x11, | ||
| integer | ldx11, | ||
| complex*16, dimension(ldx21,*) | x21, | ||
| integer | ldx21, | ||
| double precision, dimension(*) | theta, | ||
| complex*16, dimension(ldu1,*) | u1, | ||
| integer | ldu1, | ||
| complex*16, dimension(ldu2,*) | u2, | ||
| integer | ldu2, | ||
| complex*16, dimension(ldv1t,*) | v1t, | ||
| integer | ldv1t, | ||
| complex*16, dimension(*) | work, | ||
| integer | lwork, | ||
| double precision, dimension(*) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension(*) | iwork, | ||
| integer | info ) |
ZUNCSD2BY1
Download ZUNCSD2BY1 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with !> orthonormal columns that has been partitioned into a 2-by-1 block !> structure: !> !> [ I1 0 0 ] !> [ 0 C 0 ] !> [ X11 ] [ U1 | ] [ 0 0 0 ] !> X = [-----] = [---------] [----------] V1**T . !> [ X21 ] [ | U2 ] [ 0 0 0 ] !> [ 0 S 0 ] !> [ 0 0 I2] !> !> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P, !> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R !> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which !> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a !> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). !>
| [in] | JOBU1 | !> JOBU1 is CHARACTER !> = 'Y': U1 is computed; !> otherwise: U1 is not computed. !> |
| [in] | JOBU2 | !> JOBU2 is CHARACTER !> = 'Y': U2 is computed; !> otherwise: U2 is not computed. !> |
| [in] | JOBV1T | !> JOBV1T is CHARACTER !> = 'Y': V1T is computed; !> otherwise: V1T is not computed. !> |
| [in] | M | !> M is INTEGER !> The number of rows in X. !> |
| [in] | P | !> P is INTEGER !> The number of rows in X11. 0 <= P <= M. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= M. !> |
| [in,out] | X11 | !> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX11 | !> LDX11 is INTEGER !> The leading dimension of X11. LDX11 >= MAX(1,P). !> |
| [in,out] | X21 | !> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, part of the unitary matrix whose CSD is desired. !> |
| [in] | LDX21 | !> LDX21 is INTEGER !> The leading dimension of X21. LDX21 >= MAX(1,M-P). !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (R), in which R = !> MIN(P,M-P,Q,M-Q). !> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and !> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). !> |
| [out] | U1 | !> U1 is COMPLEX*16 array, dimension (P) !> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. !> |
| [in] | LDU1 | !> LDU1 is INTEGER !> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= !> MAX(1,P). !> |
| [out] | U2 | !> U2 is COMPLEX*16 array, dimension (M-P) !> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary !> matrix U2. !> |
| [in] | LDU2 | !> LDU2 is INTEGER !> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= !> MAX(1,M-P). !> |
| [out] | V1T | !> V1T is COMPLEX*16 array, dimension (Q) !> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary !> matrix V1**T. !> |
| [in] | LDV1T | !> LDV1T is INTEGER !> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= !> MAX(1,Q). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK and RWORK !> arrays, returns this value as the first entry of the WORK !> and RWORK array, respectively, and no error message related !> to LWORK or LRWORK is issued by XERBLA. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. !> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), !> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), !> define the matrix in intermediate bidiagonal-block form !> remaining after nonconvergence. INFO specifies the number !> of nonzero PHI's. !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The dimension of the array RWORK. !> !> If LRWORK=-1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK and RWORK !> arrays, returns this value as the first entry of the WORK !> and RWORK array, respectively, and no error message related !> to LWORK or LRWORK is issued by XERBLA. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: ZBBCSD did not converge. See the description of WORK !> above for details. !> |
Definition at line 252 of file zuncsd2by1.f.
| subroutine zung2l | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm).
Download ZUNG2L + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNG2L generates an m by n complex matrix Q with orthonormal columns, !> which is defined as the last n columns of a product of k elementary !> reflectors of order m !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by ZGEQLF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. M >= N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (n-k+i)-th column must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGEQLF in the last k columns of its array !> argument A. !> On exit, the m-by-n matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQLF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 113 of file zung2l.f.
| subroutine zung2r | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNG2R
Download ZUNG2R + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNG2R generates an m by n complex matrix Q with orthonormal columns, !> which is defined as the first n columns of a product of k elementary !> reflectors of order m !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZGEQRF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. M >= N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the i-th column must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGEQRF in the first k columns of its array !> argument A. !> On exit, the m by n matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQRF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 113 of file zung2r.f.
| subroutine zunghr | ( | integer | n, |
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGHR
Download ZUNGHR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGHR generates a complex unitary matrix Q which is defined as the !> product of IHI-ILO elementary reflectors of order N, as returned by !> ZGEHRD: !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !>
| [in] | N | !> N is INTEGER !> The order of the matrix Q. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> ILO and IHI must have the same values as in the previous call !> of ZGEHRD. Q is equal to the unit matrix except in the !> submatrix Q(ilo+1:ihi,ilo+1:ihi). !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the vectors which define the elementary reflectors, !> as returned by ZGEHRD. !> On exit, the N-by-N unitary matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (N-1) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEHRD. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= IHI-ILO. !> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 125 of file zunghr.f.
| subroutine zungl2 | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm).
Download ZUNGL2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, !> which is defined as the first m rows of a product of k elementary !> reflectors of order n !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. N >= M. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the i-th row must contain the vector which defines !> the elementary reflector H(i), for i = 1,2,...,k, as returned !> by ZGELQF in the first k rows of its array argument A. !> On exit, the m by n matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 112 of file zungl2.f.
| subroutine zunglq | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGLQ
Download ZUNGLQ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, !> which is defined as the first M rows of a product of K elementary !> reflectors of order N !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. N >= M. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the i-th row must contain the vector which defines !> the elementary reflector H(i), for i = 1,2,...,k, as returned !> by ZGELQF in the first k rows of its array argument A. !> On exit, the M-by-N matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit; !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 126 of file zunglq.f.
| subroutine zungql | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGQL
Download ZUNGQL + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGQL generates an M-by-N complex matrix Q with orthonormal columns, !> which is defined as the last N columns of a product of K elementary !> reflectors of order M !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by ZGEQLF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. M >= N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (n-k+i)-th column must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGEQLF in the last k columns of its array !> argument A. !> On exit, the M-by-N matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQLF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 127 of file zungql.f.
| subroutine zungqr | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGQR
Download ZUNGQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns, !> which is defined as the first N columns of a product of K elementary !> reflectors of order M !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZGEQRF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. M >= N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the i-th column must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGEQRF in the first k columns of its array !> argument A. !> On exit, the M-by-N matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQRF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 127 of file zungqr.f.
| subroutine zungr2 | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).
Download ZUNGR2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGR2 generates an m by n complex matrix Q with orthonormal rows, !> which is defined as the last m rows of a product of k elementary !> reflectors of order n !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by ZGERQF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. N >= M. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGERQF in the last k rows of its array argument !> A. !> On exit, the m-by-n matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGERQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 113 of file zungr2.f.
| subroutine zungrq | ( | integer | m, |
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGRQ
Download ZUNGRQ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGRQ generates an M-by-N complex matrix Q with orthonormal rows, !> which is defined as the last M rows of a product of K elementary !> reflectors of order N !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by ZGERQF. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix Q. N >= M. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGERQF in the last k rows of its array argument !> A. !> On exit, the M-by-N matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGERQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !> |
Definition at line 127 of file zungrq.f.
| subroutine zungtr | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGTR
Download ZUNGTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGTR generates a complex unitary matrix Q which is defined as the !> product of n-1 elementary reflectors of order N, as returned by !> ZHETRD: !> !> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), !> !> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A contains elementary reflectors !> from ZHETRD; !> = 'L': Lower triangle of A contains elementary reflectors !> from ZHETRD. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix Q. N >= 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the vectors which define the elementary reflectors, !> as returned by ZHETRD. !> On exit, the N-by-N unitary matrix Q. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= N. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (N-1) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZHETRD. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= N-1. !> For optimum performance LWORK >= (N-1)*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 122 of file zungtr.f.
| subroutine zungtsqr | ( | integer | m, |
| integer | n, | ||
| integer | mb, | ||
| integer | nb, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGTSQR
Download ZUNGTSQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal !> columns, which are the first N columns of a product of comlpex unitary !> matrices of order M which are returned by ZLATSQR !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). !> !> See the documentation for ZLATSQR. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> |
| [in] | MB | !> MB is INTEGER !> The row block size used by ZLATSQR to return !> arrays A and T. MB > N. !> (Note that if MB > M, then M is used instead of MB !> as the row block size). !> |
| [in] | NB | !> NB is INTEGER !> The column block size used by ZLATSQR to return !> arrays A and T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size). !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not accessed. !> The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by ZLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored) (same format as the output A !> below the diagonal in ZLATSQR). !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i.e the columns of A are orthogonal unit vectors. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | T | !> T is COMPLEX*16 array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB). The block !> reflectors are stored in compact form in NIRB block !> reflector sequences. Each of NIRB block reflector sequences !> is stored in a larger NB-by-N column block of T and consists !> of NICB smaller NB-by-NB upper-triangular column blocks. !> (same format as the output T in ZLATSQR). !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB1,N)). !> |
| [out] | WORK | !> (workspace) COMPLEX*16 array, dimension (MAX(2,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> The dimension of the array WORK. LWORK >= (M+NB)*N. !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 173 of file zungtsqr.f.
| subroutine zungtsqr_row | ( | integer | m, |
| integer | n, | ||
| integer | mb, | ||
| integer | nb, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNGTSQR_ROW
Download ZUNGTSQR_ROW + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with !> orthonormal columns from the output of ZLATSQR. These N orthonormal !> columns are the first N columns of a product of complex unitary !> matrices Q(k)_in of order M, which are returned by ZLATSQR in !> a special format. !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). !> !> The input matrices Q(k)_in are stored in row and column blocks in A. !> See the documentation of ZLATSQR for more details on the format of !> Q(k)_in, where each Q(k)_in is represented by block Householder !> transformations. This routine calls an auxiliary routine ZLARFB_GETT, !> where the computation is performed on each individual block. The !> algorithm first sweeps NB-sized column blocks from the right to left !> starting in the bottom row block and continues to the top row block !> (hence _ROW in the routine name). This sweep is in reverse order of !> the order in which ZLATSQR generates the output blocks. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> |
| [in] | MB | !> MB is INTEGER !> The row block size used by ZLATSQR to return !> arrays A and T. MB > N. !> (Note that if MB > M, then M is used instead of MB !> as the row block size). !> |
| [in] | NB | !> NB is INTEGER !> The column block size used by ZLATSQR to return !> arrays A and T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size). !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not used as !> input. The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by ZLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored). See ZLATSQR for more details. !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i.e the columns of A are orthogonal unit vectors. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | T | !> T is COMPLEX*16 array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB). The block !> reflectors are stored in compact form in NIRB block !> reflector sequences. Each of the NIRB block reflector !> sequences is stored in a larger NB-by-N column block of T !> and consists of NICB smaller NB-by-NB upper-triangular !> column blocks. See ZLATSQR for more details on the format !> of T. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB,N)). !> |
| [out] | WORK | !> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> The dimension of the array WORK. !> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), !> where NBLOCAL=MIN(NB,N). !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> November 2020, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 186 of file zungtsqr_row.f.
| subroutine zunhr_col | ( | integer | m, |
| integer | n, | ||
| integer | nb, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( * ) | d, | ||
| integer | info ) |
ZUNHR_COL
Download ZUNHR_COL + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns !> as input, stored in A, and performs Householder Reconstruction (HR), !> i.e. reconstructs Householder vectors V(i) implicitly representing !> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, !> where S is an N-by-N diagonal matrix with diagonal entries !> equal to +1 or -1. The Householder vectors (columns V(i) of V) are !> stored in A on output, and the diagonal entries of S are stored in D. !> Block reflectors are also returned in T !> (same output format as ZGEQRT). !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> |
| [in] | NB | !> NB is INTEGER !> The column block size to be used in the reconstruction !> of Householder column vector blocks in the array A and !> corresponding block reflectors in the array T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> !> On entry: !> !> The array A contains an M-by-N orthonormal matrix Q_in, !> i.e the columns of A are orthogonal unit vectors. !> !> On exit: !> !> The elements below the diagonal of A represent the unit !> lower-trapezoidal matrix V of Householder column vectors !> V(i). The unit diagonal entries of V are not stored !> (same format as the output below the diagonal in A from !> ZGEQRT). The matrix T and the matrix V stored on output !> in A implicitly define Q_out. !> !> The elements above the diagonal contain the factor U !> of the LU-decomposition: !> Q_in - ( S ) = V * U !> ( 0 ) !> where 0 is a (M-N)-by-(M-N) zero matrix. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | T | !> T is COMPLEX*16 array, !> dimension (LDT, N) !> !> Let NOCB = Number_of_output_col_blocks !> = CEIL(N/NB) !> !> On exit, T(1:NB, 1:N) contains NOCB upper-triangular !> block reflectors used to define Q_out stored in compact !> form as a sequence of upper-triangular NB-by-NB column !> blocks (same format as the output T in ZGEQRT). !> The matrix T and the matrix V stored on output in A !> implicitly define Q_out. NOTE: The lower triangles !> below the upper-triangular blocks will be filled with !> zeros. See Further Details. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB,N)). !> |
| [out] | D | !> D is COMPLEX*16 array, dimension min(M,N). !> The elements can be only plus or minus one. !> !> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where !> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing !> i-1 steps of “modified” Gaussian elimination. !> See Further Details. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!>
!> The computed M-by-M unitary factor Q_out is defined implicitly as
!> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
!> the compact WY-representation format in the corresponding blocks of
!> matrices V (stored in A) and T.
!>
!> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
!> matrix A contains the column vectors V(i) in NB-size column
!> blocks VB(j). For example, VB(1) contains the columns
!> V(1), V(2), ... V(NB). NOTE: The unit entries on
!> the diagonal of Y are not stored in A.
!>
!> The number of column blocks is
!>
!> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
!>
!> where each block is of order NB except for the last block, which
!> is of order LAST_NB = N - (NOCB-1)*NB.
!>
!> For example, if M=6, N=5 and NB=2, the matrix V is
!>
!>
!> V = ( VB(1), VB(2), VB(3) ) =
!>
!> = ( 1 )
!> ( v21 1 )
!> ( v31 v32 1 )
!> ( v41 v42 v43 1 )
!> ( v51 v52 v53 v54 1 )
!> ( v61 v62 v63 v54 v65 )
!>
!>
!> For each of the column blocks VB(i), an upper-triangular block
!> reflector TB(i) is computed. These blocks are stored as
!> a sequence of upper-triangular column blocks in the NB-by-N
!> matrix T. The size of each TB(i) block is NB-by-NB, except
!> for the last block, whose size is LAST_NB-by-LAST_NB.
!>
!> For example, if M=6, N=5 and NB=2, the matrix T is
!>
!> T = ( TB(1), TB(2), TB(3) ) =
!>
!> = ( t11 t12 t13 t14 t15 )
!> ( t22 t24 )
!>
!>
!> The M-by-M factor Q_out is given as a product of NOCB
!> unitary M-by-M matrices Q_out(i).
!>
!> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
!>
!> where each matrix Q_out(i) is given by the WY-representation
!> using corresponding blocks from the matrices V and T:
!>
!> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
!>
!> where I is the identity matrix. Here is the formula with matrix
!> dimensions:
!>
!> Q(i){M-by-M} = I{M-by-M} -
!> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
!>
!> where INB = NB, except for the last block NOCB
!> for which INB=LAST_NB.
!>
!> =====
!> NOTE:
!> =====
!>
!> If Q_in is the result of doing a QR factorization
!> B = Q_in * R_in, then:
!>
!> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
!>
!> So if one wants to interpret Q_out as the result
!> of the QR factorization of B, then the corresponding R_out
!> should be equal to R_out = S * R_in, i.e. some rows of R_in
!> should be multiplied by -1.
!>
!> For the details of the algorithm, see [1].
!>
!> [1] ,
!> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
!> E. Solomonik, J. Parallel Distrib. Comput.,
!> vol. 85, pp. 3-31, 2015.
!> !> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 258 of file zunhr_col.f.
| subroutine zunm2l | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNM2L multiplies a general matrix by the unitary matrix from a QL factorization determined by cgeqlf (unblocked algorithm).
Download ZUNM2L + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNM2L overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by ZGEQLF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQLF in the last k columns of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQLF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 157 of file zunm2l.f.
| subroutine zunm2r | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf (unblocked algorithm).
Download ZUNM2R + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNM2R overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQRF in the first k columns of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQRF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 157 of file zunm2r.f.
| subroutine zunmbr | ( | character | vect, |
| character | side, | ||
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMBR
Download ZUNMBR + dependencies [TGZ] [ZIP] [TXT]
!> !> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': P * C C * P !> TRANS = 'C': P**H * C C * P**H !> !> Here Q and P**H are the unitary matrices determined by ZGEBRD when !> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q !> and P**H are defined as products of elementary reflectors H(i) and !> G(i) respectively. !> !> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the !> order of the unitary matrix Q or P**H that is applied. !> !> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: !> if nq >= k, Q = H(1) H(2) . . . H(k); !> if nq < k, Q = H(1) H(2) . . . H(nq-1). !> !> If VECT = 'P', A is assumed to have been a K-by-NQ matrix: !> if k < nq, P = G(1) G(2) . . . G(k); !> if k >= nq, P = G(1) G(2) . . . G(nq-1). !>
| [in] | VECT | !> VECT is CHARACTER*1 !> = 'Q': apply Q or Q**H; !> = 'P': apply P or P**H. !> |
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q, Q**H, P or P**H from the Left; !> = 'R': apply Q, Q**H, P or P**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q or P; !> = 'C': Conjugate transpose, apply Q**H or P**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> If VECT = 'Q', the number of columns in the original !> matrix reduced by ZGEBRD. !> If VECT = 'P', the number of rows in the original !> matrix reduced by ZGEBRD. !> K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,min(nq,K)) if VECT = 'Q' !> (LDA,nq) if VECT = 'P' !> The vectors which define the elementary reflectors H(i) and !> G(i), whose products determine the matrices Q and P, as !> returned by ZGEBRD. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If VECT = 'Q', LDA >= max(1,nq); !> if VECT = 'P', LDA >= max(1,min(nq,K)). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (min(nq,K)) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i) or G(i) which determines Q or P, as returned !> by ZGEBRD in the array argument TAUQ or TAUP. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q !> or P*C or P**H*C or C*P or C*P**H. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M); !> if N = 0 or M = 0, LWORK >= 1. !> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', !> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the !> optimal blocksize. (NB = 0 if M = 0 or N = 0.) !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 194 of file zunmbr.f.
| subroutine zunmhr | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMHR
Download ZUNMHR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMHR overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix of order nq, with nq = m if !> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of !> IHI-ILO elementary reflectors, as returned by ZGEHRD: !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> ILO and IHI must have the same values as in the previous call !> of ZGEHRD. Q is equal to the unit matrix except in the !> submatrix Q(ilo+1:ihi,ilo+1:ihi). !> If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and !> ILO = 1 and IHI = 0, if M = 0; !> if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and !> ILO = 1 and IHI = 0, if N = 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L' !> (LDA,N) if SIDE = 'R' !> The vectors which define the elementary reflectors, as !> returned by ZGEHRD. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEHRD. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For optimum performance LWORK >= N*NB if SIDE = 'L', and !> LWORK >= M*NB if SIDE = 'R', where NB is the optimal !> blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 176 of file zunmhr.f.
| subroutine zunml2 | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).
Download ZUNML2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNML2 overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 157 of file zunml2.f.
| subroutine zunmlq | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMLQ
Download ZUNMLQ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMLQ overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGELQF in the first k rows of its array argument A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 165 of file zunmlq.f.
| subroutine zunmql | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMQL
Download ZUNMQL + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMQL overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQLF in the last k columns of its array argument A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQLF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 165 of file zunmql.f.
| subroutine zunmqr | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMQR
Download ZUNMQR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMQR overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQRF in the first k columns of its array argument A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQRF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 165 of file zunmqr.f.
| subroutine zunmr2 | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm).
Download ZUNMR2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMR2 overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGERQF in the last k rows of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGERQF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 157 of file zunmr2.f.
| subroutine zunmr3 | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
Download ZUNMR3 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMR3 overwrites the general complex m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | L | !> L is INTEGER !> The number of columns of the matrix A containing !> the meaningful part of the Householder reflectors. !> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZTZRZF in the last k rows of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZTZRZF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!>
Definition at line 176 of file zunmr3.f.
| subroutine zunmrq | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMRQ
Download ZUNMRQ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMRQ overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGERQF in the last k rows of its array argument A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGERQF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 165 of file zunmrq.f.
| subroutine zunmrz | ( | character | side, |
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| integer | l, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMRZ
Download ZUNMRZ + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMRZ overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZTZRZF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> |
| [in] | L | !> L is INTEGER !> The number of columns of the matrix A containing !> the meaningful part of the Householder reflectors. !> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZTZRZF in the last k rows of its array argument A. !> A is modified by the routine but restored on exit. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZTZRZF. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!>
Definition at line 185 of file zunmrz.f.
| subroutine zunmtr | ( | character | side, |
| character | uplo, | ||
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| integer | info ) |
ZUNMTR
Download ZUNMTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUNMTR overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix of order nq, with nq = m if !> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of !> nq-1 elementary reflectors, as returned by ZHETRD: !> !> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); !> !> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A contains elementary reflectors !> from ZHETRD; !> = 'L': Lower triangle of A contains elementary reflectors !> from ZHETRD. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L' !> (LDA,N) if SIDE = 'R' !> The vectors which define the elementary reflectors, as !> returned by ZHETRD. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZHETRD. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For optimum performance LWORK >= N*NB if SIDE = 'L', and !> LWORK >=M*NB if SIDE = 'R', where NB is the optimal !> blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 169 of file zunmtr.f.
| subroutine zupgtr | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUPGTR
Download ZUPGTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUPGTR generates a complex unitary matrix Q which is defined as the !> product of n-1 elementary reflectors H(i) of order n, as returned by !> ZHPTRD using packed storage: !> !> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), !> !> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular packed storage used in previous !> call to ZHPTRD; !> = 'L': Lower triangular packed storage used in previous !> call to ZHPTRD. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix Q. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The vectors which define the elementary reflectors, as !> returned by ZHPTRD. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (N-1) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZHPTRD. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> The N-by-N unitary matrix Q. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N-1) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 113 of file zupgtr.f.
| subroutine zupmtr | ( | character | side, |
| character | uplo, | ||
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | info ) |
ZUPMTR
Download ZUPMTR + dependencies [TGZ] [ZIP] [TXT]
!> !> ZUPMTR overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix of order nq, with nq = m if !> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of !> nq-1 elementary reflectors, as returned by ZHPTRD using packed !> storage: !> !> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); !> !> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). !>
| [in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangular packed storage used in previous !> call to ZHPTRD; !> = 'L': Lower triangular packed storage used in previous !> call to ZHPTRD. !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension !> (M*(M+1)/2) if SIDE = 'L' !> (N*(N+1)/2) if SIDE = 'R' !> The vectors which define the elementary reflectors, as !> returned by ZHPTRD. AP is modified by the routine but !> restored on exit. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (M-1) if SIDE = 'L' !> or (N-1) if SIDE = 'R' !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZHPTRD. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L' !> (M) if SIDE = 'R' !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 148 of file zupmtr.f.