OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cggev3.f
Go to the documentation of this file.
1*> \brief <b> CGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGGEV3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggev3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggev3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggev3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
22* $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER JOBVL, JOBVR
26* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
27* ..
28* .. Array Arguments ..
29* REAL RWORK( * )
30* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
31* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
32* $ WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> CGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices
42*> (A,B), the generalized eigenvalues, and optionally, the left and/or
43*> right generalized eigenvectors.
44*>
45*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
46*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
47*> singular. It is usually represented as the pair (alpha,beta), as
48*> there is a reasonable interpretation for beta=0, and even for both
49*> being zero.
50*>
51*> The right generalized eigenvector v(j) corresponding to the
52*> generalized eigenvalue lambda(j) of (A,B) satisfies
53*>
54*> A * v(j) = lambda(j) * B * v(j).
55*>
56*> The left generalized eigenvector u(j) corresponding to the
57*> generalized eigenvalues lambda(j) of (A,B) satisfies
58*>
59*> u(j)**H * A = lambda(j) * u(j)**H * B
60*>
61*> where u(j)**H is the conjugate-transpose of u(j).
62*> \endverbatim
63*
64* Arguments:
65* ==========
66*
67*> \param[in] JOBVL
68*> \verbatim
69*> JOBVL is CHARACTER*1
70*> = 'N': do not compute the left generalized eigenvectors;
71*> = 'V': compute the left generalized eigenvectors.
72*> \endverbatim
73*>
74*> \param[in] JOBVR
75*> \verbatim
76*> JOBVR is CHARACTER*1
77*> = 'N': do not compute the right generalized eigenvectors;
78*> = 'V': compute the right generalized eigenvectors.
79*> \endverbatim
80*>
81*> \param[in] N
82*> \verbatim
83*> N is INTEGER
84*> The order of the matrices A, B, VL, and VR. N >= 0.
85*> \endverbatim
86*>
87*> \param[in,out] A
88*> \verbatim
89*> A is COMPLEX array, dimension (LDA, N)
90*> On entry, the matrix A in the pair (A,B).
91*> On exit, A has been overwritten.
92*> \endverbatim
93*>
94*> \param[in] LDA
95*> \verbatim
96*> LDA is INTEGER
97*> The leading dimension of A. LDA >= max(1,N).
98*> \endverbatim
99*>
100*> \param[in,out] B
101*> \verbatim
102*> B is COMPLEX array, dimension (LDB, N)
103*> On entry, the matrix B in the pair (A,B).
104*> On exit, B has been overwritten.
105*> \endverbatim
106*>
107*> \param[in] LDB
108*> \verbatim
109*> LDB is INTEGER
110*> The leading dimension of B. LDB >= max(1,N).
111*> \endverbatim
112*>
113*> \param[out] ALPHA
114*> \verbatim
115*> ALPHA is COMPLEX array, dimension (N)
116*> \endverbatim
117*>
118*> \param[out] BETA
119*> \verbatim
120*> BETA is COMPLEX array, dimension (N)
121*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
122*> generalized eigenvalues.
123*>
124*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
125*> underflow, and BETA(j) may even be zero. Thus, the user
126*> should avoid naively computing the ratio alpha/beta.
127*> However, ALPHA will be always less than and usually
128*> comparable with norm(A) in magnitude, and BETA always less
129*> than and usually comparable with norm(B).
130*> \endverbatim
131*>
132*> \param[out] VL
133*> \verbatim
134*> VL is COMPLEX array, dimension (LDVL,N)
135*> If JOBVL = 'V', the left generalized eigenvectors u(j) are
136*> stored one after another in the columns of VL, in the same
137*> order as their eigenvalues.
138*> Each eigenvector is scaled so the largest component has
139*> abs(real part) + abs(imag. part) = 1.
140*> Not referenced if JOBVL = 'N'.
141*> \endverbatim
142*>
143*> \param[in] LDVL
144*> \verbatim
145*> LDVL is INTEGER
146*> The leading dimension of the matrix VL. LDVL >= 1, and
147*> if JOBVL = 'V', LDVL >= N.
148*> \endverbatim
149*>
150*> \param[out] VR
151*> \verbatim
152*> VR is COMPLEX array, dimension (LDVR,N)
153*> If JOBVR = 'V', the right generalized eigenvectors v(j) are
154*> stored one after another in the columns of VR, in the same
155*> order as their eigenvalues.
156*> Each eigenvector is scaled so the largest component has
157*> abs(real part) + abs(imag. part) = 1.
158*> Not referenced if JOBVR = 'N'.
159*> \endverbatim
160*>
161*> \param[in] LDVR
162*> \verbatim
163*> LDVR is INTEGER
164*> The leading dimension of the matrix VR. LDVR >= 1, and
165*> if JOBVR = 'V', LDVR >= N.
166*> \endverbatim
167*>
168*> \param[out] WORK
169*> \verbatim
170*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
171*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
172*> \endverbatim
173*>
174*> \param[in] LWORK
175*> \verbatim
176*> LWORK is INTEGER
177*> The dimension of the array WORK.
178*>
179*> If LWORK = -1, then a workspace query is assumed; the routine
180*> only calculates the optimal size of the WORK array, returns
181*> this value as the first entry of the WORK array, and no error
182*> message related to LWORK is issued by XERBLA.
183*> \endverbatim
184*>
185*> \param[out] RWORK
186*> \verbatim
187*> RWORK is REAL array, dimension (8*N)
188*> \endverbatim
189*>
190*> \param[out] INFO
191*> \verbatim
192*> INFO is INTEGER
193*> = 0: successful exit
194*> < 0: if INFO = -i, the i-th argument had an illegal value.
195*> =1,...,N:
196*> The QZ iteration failed. No eigenvectors have been
197*> calculated, but ALPHA(j) and BETA(j) should be
198*> correct for j=INFO+1,...,N.
199*> > N: =N+1: other then QZ iteration failed in CHGEQZ,
200*> =N+2: error return from CTGEVC.
201*> \endverbatim
202*
203* Authors:
204* ========
205*
206*> \author Univ. of Tennessee
207*> \author Univ. of California Berkeley
208*> \author Univ. of Colorado Denver
209*> \author NAG Ltd.
210*
211*> \ingroup complexGEeigen
212*
213* =====================================================================
214 SUBROUTINE cggev3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
215 $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
216*
217* -- LAPACK driver routine --
218* -- LAPACK is a software package provided by Univ. of Tennessee, --
219* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
220*
221* .. Scalar Arguments ..
222 CHARACTER JOBVL, JOBVR
223 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
224* ..
225* .. Array Arguments ..
226 REAL RWORK( * )
227 COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
228 $ beta( * ), vl( ldvl, * ), vr( ldvr, * ),
229 $ work( * )
230* ..
231*
232* =====================================================================
233*
234* .. Parameters ..
235 REAL ZERO, ONE
236 parameter( zero = 0.0e0, one = 1.0e0 )
237 COMPLEX CZERO, CONE
238 parameter( czero = ( 0.0e0, 0.0e0 ),
239 $ cone = ( 1.0e0, 0.0e0 ) )
240* ..
241* .. Local Scalars ..
242 LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
243 CHARACTER CHTEMP
244 INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
245 $ in, iright, irows, irwrk, itau, iwrk, jc, jr,
246 $ lwkopt
247 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
248 $ smlnum, temp
249 COMPLEX X
250* ..
251* .. Local Arrays ..
252 LOGICAL LDUMMA( 1 )
253* ..
254* .. External Subroutines ..
255 EXTERNAL cgeqrf, cggbak, cggbal, cgghd3, claqz0, clacpy,
257 $ xerbla
258* ..
259* .. External Functions ..
260 LOGICAL LSAME
261 REAL CLANGE, SLAMCH
262 EXTERNAL lsame, clange, slamch
263* ..
264* .. Intrinsic Functions ..
265 INTRINSIC abs, aimag, max, real, sqrt
266* ..
267* .. Statement Functions ..
268 REAL ABS1
269* ..
270* .. Statement Function definitions ..
271 abs1( x ) = abs( real( x ) ) + abs( aimag( x ) )
272* ..
273* .. Executable Statements ..
274*
275* Decode the input arguments
276*
277 IF( lsame( jobvl, 'N' ) ) THEN
278 ijobvl = 1
279 ilvl = .false.
280 ELSE IF( lsame( jobvl, 'V' ) ) THEN
281 ijobvl = 2
282 ilvl = .true.
283 ELSE
284 ijobvl = -1
285 ilvl = .false.
286 END IF
287*
288 IF( lsame( jobvr, 'N' ) ) THEN
289 ijobvr = 1
290 ilvr = .false.
291 ELSE IF( lsame( jobvr, 'V' ) ) THEN
292 ijobvr = 2
293 ilvr = .true.
294 ELSE
295 ijobvr = -1
296 ilvr = .false.
297 END IF
298 ilv = ilvl .OR. ilvr
299*
300* Test the input arguments
301*
302 info = 0
303 lquery = ( lwork.EQ.-1 )
304 IF( ijobvl.LE.0 ) THEN
305 info = -1
306 ELSE IF( ijobvr.LE.0 ) THEN
307 info = -2
308 ELSE IF( n.LT.0 ) THEN
309 info = -3
310 ELSE IF( lda.LT.max( 1, n ) ) THEN
311 info = -5
312 ELSE IF( ldb.LT.max( 1, n ) ) THEN
313 info = -7
314 ELSE IF( ldvl.LT.1 .OR. ( ilvl .AND. ldvl.LT.n ) ) THEN
315 info = -11
316 ELSE IF( ldvr.LT.1 .OR. ( ilvr .AND. ldvr.LT.n ) ) THEN
317 info = -13
318 ELSE IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
319 info = -15
320 END IF
321*
322* Compute workspace
323*
324 IF( info.EQ.0 ) THEN
325 CALL cgeqrf( n, n, b, ldb, work, work, -1, ierr )
326 lwkopt = max( n, n+int( work( 1 ) ) )
327 CALL cunmqr( 'L', 'C', n, n, n, b, ldb, work, a, lda, work,
328 $ -1, ierr )
329 lwkopt = max( lwkopt, n+int( work( 1 ) ) )
330 IF( ilvl ) THEN
331 CALL cungqr( n, n, n, vl, ldvl, work, work, -1, ierr )
332 lwkopt = max( lwkopt, n+int( work( 1 ) ) )
333 END IF
334 IF( ilv ) THEN
335 CALL cgghd3( jobvl, jobvr, n, 1, n, a, lda, b, ldb, vl,
336 $ ldvl, vr, ldvr, work, -1, ierr )
337 lwkopt = max( lwkopt, n+int( work( 1 ) ) )
338 CALL claqz0( 'S', jobvl, jobvr, n, 1, n, a, lda, b, ldb,
339 $ alpha, beta, vl, ldvl, vr, ldvr, work, -1,
340 $ rwork, 0, ierr )
341 lwkopt = max( lwkopt, n+int( work( 1 ) ) )
342 ELSE
343 CALL cgghd3( 'N', 'N', n, 1, n, a, lda, b, ldb, vl, ldvl,
344 $ vr, ldvr, work, -1, ierr )
345 lwkopt = max( lwkopt, n+int( work( 1 ) ) )
346 CALL claqz0( 'e', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
347 $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
348 $ RWORK, 0, IERR )
349 LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
350 END IF
351 WORK( 1 ) = CMPLX( LWKOPT )
352 END IF
353*
354.NE. IF( INFO0 ) THEN
355 CALL XERBLA( 'cggev3 ', -INFO )
356 RETURN
357 ELSE IF( LQUERY ) THEN
358 RETURN
359 END IF
360*
361* Quick return if possible
362*
363.EQ. IF( N0 )
364 $ RETURN
365*
366* Get machine constants
367*
368 EPS = SLAMCH( 'e' )*SLAMCH( 'b' )
369 SMLNUM = SLAMCH( 's' )
370 BIGNUM = ONE / SMLNUM
371 CALL SLABAD( SMLNUM, BIGNUM )
372 SMLNUM = SQRT( SMLNUM ) / EPS
373 BIGNUM = ONE / SMLNUM
374*
375* Scale A if max element outside range [SMLNUM,BIGNUM]
376*
377 ANRM = CLANGE( 'm', N, N, A, LDA, RWORK )
378 ILASCL = .FALSE.
379.GT..AND..LT. IF( ANRMZERO ANRMSMLNUM ) THEN
380 ANRMTO = SMLNUM
381 ILASCL = .TRUE.
382.GT. ELSE IF( ANRMBIGNUM ) THEN
383 ANRMTO = BIGNUM
384 ILASCL = .TRUE.
385 END IF
386 IF( ILASCL )
387 $ CALL CLASCL( 'g', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
388*
389* Scale B if max element outside range [SMLNUM,BIGNUM]
390*
391 BNRM = CLANGE( 'm', N, N, B, LDB, RWORK )
392 ILBSCL = .FALSE.
393.GT..AND..LT. IF( BNRMZERO BNRMSMLNUM ) THEN
394 BNRMTO = SMLNUM
395 ILBSCL = .TRUE.
396.GT. ELSE IF( BNRMBIGNUM ) THEN
397 BNRMTO = BIGNUM
398 ILBSCL = .TRUE.
399 END IF
400 IF( ILBSCL )
401 $ CALL CLASCL( 'g', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
402*
403* Permute the matrices A, B to isolate eigenvalues if possible
404*
405 ILEFT = 1
406 IRIGHT = N + 1
407 IRWRK = IRIGHT + N
408 CALL CGGBAL( 'p', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
409 $ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
410*
411* Reduce B to triangular form (QR decomposition of B)
412*
413 IROWS = IHI + 1 - ILO
414 IF( ILV ) THEN
415 ICOLS = N + 1 - ILO
416 ELSE
417 ICOLS = IROWS
418 END IF
419 ITAU = 1
420 IWRK = ITAU + IROWS
421 CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
422 $ WORK( IWRK ), LWORK+1-IWRK, IERR )
423*
424* Apply the orthogonal transformation to matrix A
425*
426 CALL CUNMQR( 'l', 'c', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
427 $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
428 $ LWORK+1-IWRK, IERR )
429*
430* Initialize VL
431*
432 IF( ILVL ) THEN
433 CALL CLASET( 'full', N, N, CZERO, CONE, VL, LDVL )
434.GT. IF( IROWS1 ) THEN
435 CALL CLACPY( 'l', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
436 $ VL( ILO+1, ILO ), LDVL )
437 END IF
438 CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
439 $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
440 END IF
441*
442* Initialize VR
443*
444 IF( ILVR )
445 $ CALL CLASET( 'full', N, N, CZERO, CONE, VR, LDVR )
446*
447* Reduce to generalized Hessenberg form
448*
449 IF( ILV ) THEN
450*
451* Eigenvectors requested -- work on whole matrix.
452*
453 CALL CGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
454 $ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK,
455 $ IERR )
456 ELSE
457 CALL CGGHD3( 'n', 'n', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
458 $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
459 $ WORK( IWRK ), LWORK+1-IWRK, IERR )
460 END IF
461*
462* Perform QZ algorithm (Compute eigenvalues, and optionally, the
463* Schur form and Schur vectors)
464*
465 IWRK = ITAU
466 IF( ILV ) THEN
467 CHTEMP = 's'
468 ELSE
469 CHTEMP = 'e'
470 END IF
471 CALL CLAQZ0( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
472 $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
473 $ LWORK+1-IWRK, RWORK( IRWRK ), 0, IERR )
474.NE. IF( IERR0 ) THEN
475.GT..AND..LE. IF( IERR0 IERRN ) THEN
476 INFO = IERR
477.GT..AND..LE. ELSE IF( IERRN IERR2*N ) THEN
478 INFO = IERR - N
479 ELSE
480 INFO = N + 1
481 END IF
482 GO TO 70
483 END IF
484*
485* Compute Eigenvectors
486*
487 IF( ILV ) THEN
488 IF( ILVL ) THEN
489 IF( ILVR ) THEN
490 CHTEMP = 'b'
491 ELSE
492 CHTEMP = 'l'
493 END IF
494 ELSE
495 CHTEMP = 'r'
496 END IF
497*
498 CALL CTGEVC( CHTEMP, 'b', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
499 $ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
500 $ IERR )
501.NE. IF( IERR0 ) THEN
502 INFO = N + 2
503 GO TO 70
504 END IF
505*
506* Undo balancing on VL and VR and normalization
507*
508 IF( ILVL ) THEN
509 CALL CGGBAK( 'p', 'l', N, ILO, IHI, RWORK( ILEFT ),
510 $ RWORK( IRIGHT ), N, VL, LDVL, IERR )
511 DO 30 JC = 1, N
512 TEMP = ZERO
513 DO 10 JR = 1, N
514 TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
515 10 CONTINUE
516.LT. IF( TEMPSMLNUM )
517 $ GO TO 30
518 TEMP = ONE / TEMP
519 DO 20 JR = 1, N
520 VL( JR, JC ) = VL( JR, JC )*TEMP
521 20 CONTINUE
522 30 CONTINUE
523 END IF
524 IF( ILVR ) THEN
525 CALL CGGBAK( 'p', 'r', N, ILO, IHI, RWORK( ILEFT ),
526 $ RWORK( IRIGHT ), N, VR, LDVR, IERR )
527 DO 60 JC = 1, N
528 TEMP = ZERO
529 DO 40 JR = 1, N
530 TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
531 40 CONTINUE
532.LT. IF( TEMPSMLNUM )
533 $ GO TO 60
534 TEMP = ONE / TEMP
535 DO 50 JR = 1, N
536 VR( JR, JC ) = VR( JR, JC )*TEMP
537 50 CONTINUE
538 60 CONTINUE
539 END IF
540 END IF
541*
542* Undo scaling if necessary
543*
544 70 CONTINUE
545*
546 IF( ILASCL )
547 $ CALL CLASCL( 'g', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
548*
549 IF( ILBSCL )
550 $ CALL CLASCL( 'g', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
551*
552 WORK( 1 ) = CMPLX( LWKOPT )
553 RETURN
554*
555* End of CGGEV3
556*
557 END
subroutine slabad(small, large)
SLABAD
Definition slabad.f:74
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
CGGBAK
Definition cggbak.f:148
subroutine cggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
CGGBAL
Definition cggbal.f:177
subroutine cgeqrf(m, n, a, lda, tau, work, lwork, info)
CGEQRF
Definition cgeqrf.f:146
subroutine ctgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, rwork, info)
CTGEVC
Definition ctgevc.f:219
recursive subroutine claqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz, work, lwork, rwork, rec, info)
CLAQZ0
Definition claqz0.f:284
subroutine cggev3(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
CGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (...
Definition cggev3.f:216
subroutine clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition clascl.f:143
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR
Definition cunmqr.f:168
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:128
subroutine cgghd3(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork, info)
CGGHD3
Definition cgghd3.f:231
#define max(a, b)
Definition macros.h:21
subroutine jc(p, t, a, b, cm, cn, tref, tm, epsm, sigmam, jc_yield, tan_jc)
Definition sigeps106.F:339