505 SUBROUTINE chesvxx( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
506 $ EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
507 $ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
508 $ NPARAMS, PARAMS, WORK, RWORK, INFO )
515 CHARACTER EQUED, FACT, UPLO
516 INTEGER INFO, LDA, LDAF, LDB, LDX, N, , NPARAMS,
522 COMPLEX A( LDA, * ), AF( LDAF, * ), ( LDB, * ),
523 $ WORK( * ), X( LDX, * )
524 REAL S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
525 $ err_bnds_norm( nrhs, * ),
526 $ err_bnds_comp( nrhs, * )
533 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
534 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
535 INTEGER , NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
536 INTEGER CMP_ERR_I, PIV_GROWTH_I
537 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
539 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
540 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
544 LOGICAL EQUIL, NOFACT, RCEQU
546 REAL AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
551 REAL SLAMCH, CLA_HERPVGRW
563 nofact = lsame( fact,
'N' )
564 equil = lsame( fact,
'E' )
565 smlnum = slamch(
'Safe minimum' )
566 bignum = one / smlnum
567 IF( nofact .OR. equil )
THEN
571 rcequ = lsame( equed,
'Y' )
582 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
583 $ lsame( fact,
'F' ) )
THEN
585 ELSE IF( .NOT.lsame( uplo,
'U' ) .AND.
586 $ .NOT.lsame( uplo,
'L' ) )
THEN
588 ELSE IF( n.LT.0 )
THEN
590 ELSE IF( nrhs.LT.0 )
THEN
592 ELSE IF( lda.LT.
max( 1, n ) )
THEN
594 ELSE IF( ldaf.LT.
max( 1, n ) )
THEN
596 ELSE IF( lsame( fact,
'F' ) .AND. .NOT.
597 $ ( rcequ .OR. lsame( equed,
'N' ) ) )
THEN
604 smin =
min( smin, s( j ) )
605 smax =
max( smax, s( j ) )
607 IF( smin.LE.zero )
THEN
609 ELSE IF( n.GT.0 )
THEN
610 scond =
max( smin, smlnum ) /
min( smax, bignum )
616 IF( ldb.LT.
max( 1, n ) )
THEN
618 ELSE IF( ldx.LT.
max( 1, n ) )
THEN
625 CALL xerbla(
'CHESVXX', -info )
633 CALL cheequb( uplo, n, a, lda, s, scond, amax, work, infequ )
634 IF( infequ.EQ.0 )
THEN
638 CALL claqhe( uplo, n, a, lda, s, scond, amax, equed )
639 rcequ = lsame( equed,
'Y' )
645 IF( rcequ )
CALL clascl2( n, nrhs, s, b, ldb )
647 IF( nofact .OR. equil )
THEN
651 CALL clacpy( uplo, n, n, a, lda, af, ldaf )
652 CALL chetrf( uplo, n, af, ldaf, ipiv, work, 5*
max(1,n), info )
663 $ rpvgrw = cla_herpvgrw( uplo, n, info, a, lda, af, ldaf,
672 $ rpvgrw = cla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv,
677 CALL clacpy(
'Full', n, nrhs, b, ldb, x, ldx )
678 CALL chetrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
683 CALL cherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
684 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
685 $ err_bnds_comp, nparams, params, work, rwork, info )
690 CALL clascl2 ( n, nrhs, s, x, ldx )
subroutine cherfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CHERFSX
subroutine chesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CHESVXX computes the solution to system of linear equations A * X = B for HE matrices