OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dgeqr.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dgeqr (m, n, a, lda, t, tsize, work, lwork, info)
 DGEQR

Function/Subroutine Documentation

◆ dgeqr()

subroutine dgeqr ( integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) t,
integer tsize,
double precision, dimension( * ) work,
integer lwork,
integer info )

DGEQR

Purpose:
!>
!> DGEQR computes a QR factorization of a real M-by-N matrix A:
!>
!>    A = Q * ( R ),
!>            ( 0 )
!>
!> where:
!>
!>    Q is a M-by-M orthogonal matrix;
!>    R is an upper-triangular N-by-N matrix;
!>    0 is a (M-N)-by-N zero matrix, if M > N.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(M,N)-by-N upper trapezoidal matrix R
!>          (R is upper triangular if M >= N);
!>          the elements below the diagonal are used to store part of the 
!>          data structure to represent Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]T
!>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE))
!>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
!>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
!>          Remaining T contains part of the data structure used to represent Q.
!>          If one wants to apply or construct Q, then one needs to keep T 
!>          (in addition to A) and pass it to further subroutines.
!> 
[in]TSIZE
!>          TSIZE is INTEGER
!>          If TSIZE >= 5, the dimension of the array T.
!>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
!>          only calculates the sizes of the T and WORK arrays, returns these
!>          values as the first entries of the T and WORK arrays, and no error
!>          message related to T or WORK is issued by XERBLA.
!>          If TSIZE = -1, the routine calculates optimal size of T for the 
!>          optimum performance and returns this value in T(1).
!>          If TSIZE = -2, the routine calculates minimal size of T and 
!>          returns this value in T(1).
!> 
[out]WORK
!>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
!>          or optimal, if query was assumed) LWORK.
!>          See LWORK for details.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
!>          only calculates the sizes of the T and WORK arrays, returns these
!>          values as the first entries of the T and WORK arrays, and no error
!>          message related to T or WORK is issued by XERBLA.
!>          If LWORK = -1, the routine calculates optimal size of WORK for the
!>          optimal performance and returns this value in WORK(1).
!>          If LWORK = -2, the routine calculates minimal size of WORK and 
!>          returns this value in WORK(1).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
!>
!> The goal of the interface is to give maximum freedom to the developers for
!> creating any QR factorization algorithm they wish. The triangular 
!> (trapezoidal) R has to be stored in the upper part of A. The lower part of A
!> and the array T can be used to store any relevant information for applying or
!> constructing the Q factor. The WORK array can safely be discarded after exit.
!>
!> Caution: One should not expect the sizes of T and WORK to be the same from one 
!> LAPACK implementation to the other, or even from one execution to the other.
!> A workspace query (for T and WORK) is needed at each execution. However, 
!> for a given execution, the size of T and WORK are fixed and will not change 
!> from one query to the next.
!>
!> 
Further Details particular to this LAPACK implementation:
!>
!> These details are particular for this LAPACK implementation. Users should not 
!> take them for granted. These details may change in the future, and are not likely
!> true for another LAPACK implementation. These details are relevant if one wants
!> to try to understand the code. They are not part of the interface.
!>
!> In this version,
!>
!>          T(2): row block size (MB)
!>          T(3): column block size (NB)
!>          T(6:TSIZE): data structure needed for Q, computed by
!>                           DLATSQR or DGEQRT
!>
!>  Depending on the matrix dimensions M and N, and row and column
!>  block sizes MB and NB returned by ILAENV, DGEQR will use either
!>  DLATSQR (if the matrix is tall-and-skinny) or DGEQRT to compute
!>  the QR factorization.
!>
!> 

Definition at line 172 of file dgeqr.f.

174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
178*
179* .. Scalar Arguments ..
180 INTEGER INFO, LDA, M, N, TSIZE, LWORK
181* ..
182* .. Array Arguments ..
183 DOUBLE PRECISION A( LDA, * ), T( * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 LOGICAL LQUERY, LMINWS, MINT, MINW
191 INTEGER MB, NB, MINTSZ, NBLCKS
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 EXTERNAL lsame
196* ..
197* .. External Subroutines ..
198 EXTERNAL dlatsqr, dgeqrt, xerbla
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC max, min, mod
202* ..
203* .. External Functions ..
204 INTEGER ILAENV
205 EXTERNAL ilaenv
206* ..
207* .. Executable Statements ..
208*
209* Test the input arguments
210*
211 info = 0
212*
213 lquery = ( tsize.EQ.-1 .OR. tsize.EQ.-2 .OR.
214 $ lwork.EQ.-1 .OR. lwork.EQ.-2 )
215*
216 mint = .false.
217 minw = .false.
218 IF( tsize.EQ.-2 .OR. lwork.EQ.-2 ) THEN
219 IF( tsize.NE.-1 ) mint = .true.
220 IF( lwork.NE.-1 ) minw = .true.
221 END IF
222*
223* Determine the block size
224*
225 IF( min( m, n ).GT.0 ) THEN
226 mb = ilaenv( 1, 'DGEQR ', ' ', m, n, 1, -1 )
227 nb = ilaenv( 1, 'DGEQR ', ' ', m, n, 2, -1 )
228 ELSE
229 mb = m
230 nb = 1
231 END IF
232 IF( mb.GT.m .OR. mb.LE.n ) mb = m
233 IF( nb.GT.min( m, n ) .OR. nb.LT.1 ) nb = 1
234 mintsz = n + 5
235 IF( mb.GT.n .AND. m.GT.n ) THEN
236 IF( mod( m - n, mb - n ).EQ.0 ) THEN
237 nblcks = ( m - n ) / ( mb - n )
238 ELSE
239 nblcks = ( m - n ) / ( mb - n ) + 1
240 END IF
241 ELSE
242 nblcks = 1
243 END IF
244*
245* Determine if the workspace size satisfies minimal size
246*
247 lminws = .false.
248 IF( ( tsize.LT.max( 1, nb*n*nblcks + 5 ) .OR. lwork.LT.nb*n )
249 $ .AND. ( lwork.GE.n ) .AND. ( tsize.GE.mintsz )
250 $ .AND. ( .NOT.lquery ) ) THEN
251 IF( tsize.LT.max( 1, nb*n*nblcks + 5 ) ) THEN
252 lminws = .true.
253 nb = 1
254 mb = m
255 END IF
256 IF( lwork.LT.nb*n ) THEN
257 lminws = .true.
258 nb = 1
259 END IF
260 END IF
261*
262 IF( m.LT.0 ) THEN
263 info = -1
264 ELSE IF( n.LT.0 ) THEN
265 info = -2
266 ELSE IF( lda.LT.max( 1, m ) ) THEN
267 info = -4
268 ELSE IF( tsize.LT.max( 1, nb*n*nblcks + 5 )
269 $ .AND. ( .NOT.lquery ) .AND. ( .NOT.lminws ) ) THEN
270 info = -6
271 ELSE IF( ( lwork.LT.max( 1, n*nb ) ) .AND. ( .NOT.lquery )
272 $ .AND. ( .NOT.lminws ) ) THEN
273 info = -8
274 END IF
275*
276 IF( info.EQ.0 ) THEN
277 IF( mint ) THEN
278 t( 1 ) = mintsz
279 ELSE
280 t( 1 ) = nb*n*nblcks + 5
281 END IF
282 t( 2 ) = mb
283 t( 3 ) = nb
284 IF( minw ) THEN
285 work( 1 ) = max( 1, n )
286 ELSE
287 work( 1 ) = max( 1, nb*n )
288 END IF
289 END IF
290 IF( info.NE.0 ) THEN
291 CALL xerbla( 'DGEQR', -info )
292 RETURN
293 ELSE IF( lquery ) THEN
294 RETURN
295 END IF
296*
297* Quick return if possible
298*
299 IF( min( m, n ).EQ.0 ) THEN
300 RETURN
301 END IF
302*
303* The QR Decomposition
304*
305 IF( ( m.LE.n ) .OR. ( mb.LE.n ) .OR. ( mb.GE.m ) ) THEN
306 CALL dgeqrt( m, n, nb, a, lda, t( 6 ), nb, work, info )
307 ELSE
308 CALL dlatsqr( m, n, mb, nb, a, lda, t( 6 ), nb, work,
309 $ lwork, info )
310 END IF
311*
312 work( 1 ) = max( 1, nb*n )
313*
314 RETURN
315*
316* End of DGEQR
317*
subroutine dlatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
DLATSQR
Definition dlatsqr.f:166
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine dgeqrt(m, n, nb, a, lda, t, ldt, work, info)
DGEQRT
Definition dgeqrt.f:141
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21