OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dsbevd_2stage.f
Go to the documentation of this file.
1*> \brief <b> DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* @precisions fortran d -> s
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download DSBEVD_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE DSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
24* WORK, LWORK, IWORK, LIWORK, INFO )
25*
26* IMPLICIT NONE
27*
28* .. Scalar Arguments ..
29* CHARACTER JOBZ, UPLO
30* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
31* ..
32* .. Array Arguments ..
33* INTEGER IWORK( * )
34* DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> DSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
44*> a real symmetric band matrix A using the 2stage technique for
45*> the reduction to tridiagonal. If eigenvectors are desired, it uses
46*> a divide and conquer algorithm.
47*>
48*> The divide and conquer algorithm makes very mild assumptions about
49*> floating point arithmetic. It will work on machines with a guard
50*> digit in add/subtract, or on those binary machines without guard
51*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
52*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
53*> without guard digits, but we know of none.
54*> \endverbatim
55*
56* Arguments:
57* ==========
58*
59*> \param[in] JOBZ
60*> \verbatim
61*> JOBZ is CHARACTER*1
62*> = 'N': Compute eigenvalues only;
63*> = 'V': Compute eigenvalues and eigenvectors.
64*> Not available in this release.
65*> \endverbatim
66*>
67*> \param[in] UPLO
68*> \verbatim
69*> UPLO is CHARACTER*1
70*> = 'U': Upper triangle of A is stored;
71*> = 'L': Lower triangle of A is stored.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The order of the matrix A. N >= 0.
78*> \endverbatim
79*>
80*> \param[in] KD
81*> \verbatim
82*> KD is INTEGER
83*> The number of superdiagonals of the matrix A if UPLO = 'U',
84*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
85*> \endverbatim
86*>
87*> \param[in,out] AB
88*> \verbatim
89*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
90*> On entry, the upper or lower triangle of the symmetric band
91*> matrix A, stored in the first KD+1 rows of the array. The
92*> j-th column of A is stored in the j-th column of the array AB
93*> as follows:
94*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
95*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
96*>
97*> On exit, AB is overwritten by values generated during the
98*> reduction to tridiagonal form. If UPLO = 'U', the first
99*> superdiagonal and the diagonal of the tridiagonal matrix T
100*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
101*> the diagonal and first subdiagonal of T are returned in the
102*> first two rows of AB.
103*> \endverbatim
104*>
105*> \param[in] LDAB
106*> \verbatim
107*> LDAB is INTEGER
108*> The leading dimension of the array AB. LDAB >= KD + 1.
109*> \endverbatim
110*>
111*> \param[out] W
112*> \verbatim
113*> W is DOUBLE PRECISION array, dimension (N)
114*> If INFO = 0, the eigenvalues in ascending order.
115*> \endverbatim
116*>
117*> \param[out] Z
118*> \verbatim
119*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
120*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
121*> eigenvectors of the matrix A, with the i-th column of Z
122*> holding the eigenvector associated with W(i).
123*> If JOBZ = 'N', then Z is not referenced.
124*> \endverbatim
125*>
126*> \param[in] LDZ
127*> \verbatim
128*> LDZ is INTEGER
129*> The leading dimension of the array Z. LDZ >= 1, and if
130*> JOBZ = 'V', LDZ >= max(1,N).
131*> \endverbatim
132*>
133*> \param[out] WORK
134*> \verbatim
135*> WORK is DOUBLE PRECISION array, dimension LWORK
136*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
137*> \endverbatim
138*>
139*> \param[in] LWORK
140*> \verbatim
141*> LWORK is INTEGER
142*> The length of the array WORK. LWORK >= 1, when N <= 1;
143*> otherwise
144*> If JOBZ = 'N' and N > 1, LWORK must be queried.
145*> LWORK = MAX(1, dimension) where
146*> dimension = (2KD+1)*N + KD*NTHREADS + N
147*> where KD is the size of the band.
148*> NTHREADS is the number of threads used when
149*> openMP compilation is enabled, otherwise =1.
150*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
151*>
152*> If LWORK = -1, then a workspace query is assumed; the routine
153*> only calculates the optimal sizes of the WORK and IWORK
154*> arrays, returns these values as the first entries of the WORK
155*> and IWORK arrays, and no error message related to LWORK or
156*> LIWORK is issued by XERBLA.
157*> \endverbatim
158*>
159*> \param[out] IWORK
160*> \verbatim
161*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
162*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
163*> \endverbatim
164*>
165*> \param[in] LIWORK
166*> \verbatim
167*> LIWORK is INTEGER
168*> The dimension of the array IWORK.
169*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
170*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
171*>
172*> If LIWORK = -1, then a workspace query is assumed; the
173*> routine only calculates the optimal sizes of the WORK and
174*> IWORK arrays, returns these values as the first entries of
175*> the WORK and IWORK arrays, and no error message related to
176*> LWORK or LIWORK is issued by XERBLA.
177*> \endverbatim
178*>
179*> \param[out] INFO
180*> \verbatim
181*> INFO is INTEGER
182*> = 0: successful exit
183*> < 0: if INFO = -i, the i-th argument had an illegal value
184*> > 0: if INFO = i, the algorithm failed to converge; i
185*> off-diagonal elements of an intermediate tridiagonal
186*> form did not converge to zero.
187*> \endverbatim
188*
189* Authors:
190* ========
191*
192*> \author Univ. of Tennessee
193*> \author Univ. of California Berkeley
194*> \author Univ. of Colorado Denver
195*> \author NAG Ltd.
196*
197*> \ingroup doubleOTHEReigen
198*
199*> \par Further Details:
200* =====================
201*>
202*> \verbatim
203*>
204*> All details about the 2stage techniques are available in:
205*>
206*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
207*> Parallel reduction to condensed forms for symmetric eigenvalue problems
208*> using aggregated fine-grained and memory-aware kernels. In Proceedings
209*> of 2011 International Conference for High Performance Computing,
210*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
211*> Article 8 , 11 pages.
212*> http://doi.acm.org/10.1145/2063384.2063394
213*>
214*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
215*> An improved parallel singular value algorithm and its implementation
216*> for multicore hardware, In Proceedings of 2013 International Conference
217*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
218*> Denver, Colorado, USA, 2013.
219*> Article 90, 12 pages.
220*> http://doi.acm.org/10.1145/2503210.2503292
221*>
222*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
223*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
224*> calculations based on fine-grained memory aware tasks.
225*> International Journal of High Performance Computing Applications.
226*> Volume 28 Issue 2, Pages 196-209, May 2014.
227*> http://hpc.sagepub.com/content/28/2/196
228*>
229*> \endverbatim
230*
231* =====================================================================
232 SUBROUTINE dsbevd_2stage( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
233 $ WORK, LWORK, IWORK, LIWORK, INFO )
234*
235 IMPLICIT NONE
236*
237* -- LAPACK driver routine --
238* -- LAPACK is a software package provided by Univ. of Tennessee, --
239* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
240*
241* .. Scalar Arguments ..
242 CHARACTER JOBZ, UPLO
243 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
244* ..
245* .. Array Arguments ..
246 INTEGER IWORK( * )
247 DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
248* ..
249*
250* =====================================================================
251*
252* .. Parameters ..
253 DOUBLE PRECISION ZERO, ONE
254 parameter( zero = 0.0d+0, one = 1.0d+0 )
255* ..
256* .. Local Scalars ..
257 LOGICAL LOWER, LQUERY, WANTZ
258 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
259 $ llwork, lwmin, lhtrd, lwtrd, ib, indhous,
260 $ llwrk2
261 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
262 $ smlnum
263* ..
264* .. External Functions ..
265 LOGICAL LSAME
266 INTEGER ILAENV2STAGE
267 DOUBLE PRECISION DLAMCH, DLANSB
268 EXTERNAL lsame, dlamch, dlansb, ilaenv2stage
269* ..
270* .. External Subroutines ..
271 EXTERNAL dgemm, dlacpy, dlascl, dscal, dstedc,
273* ..
274* .. Intrinsic Functions ..
275 INTRINSIC sqrt
276* ..
277* .. Executable Statements ..
278*
279* Test the input parameters.
280*
281 wantz = lsame( jobz, 'V' )
282 lower = lsame( uplo, 'l' )
283.EQ..OR..EQ. LQUERY = ( LWORK-1 LIWORK-1 )
284*
285 INFO = 0
286.LE. IF( N1 ) THEN
287 LIWMIN = 1
288 LWMIN = 1
289 ELSE
290 IB = ILAENV2STAGE( 2, 'dsytrd_sb2st', JOBZ, N, KD, -1, -1 )
291 LHTRD = ILAENV2STAGE( 3, 'dsytrd_sb2st', JOBZ, N, KD, IB, -1 )
292 LWTRD = ILAENV2STAGE( 4, 'dsytrd_sb2st', JOBZ, N, KD, IB, -1 )
293 IF( WANTZ ) THEN
294 LIWMIN = 3 + 5*N
295 LWMIN = 1 + 5*N + 2*N**2
296 ELSE
297 LIWMIN = 1
298 LWMIN = MAX( 2*N, N+LHTRD+LWTRD )
299 END IF
300 END IF
301.NOT. IF( ( LSAME( JOBZ, 'n' ) ) ) THEN
302 INFO = -1
303.NOT..OR. ELSE IF( ( LOWER LSAME( UPLO, 'u' ) ) ) THEN
304 INFO = -2
305.LT. ELSE IF( N0 ) THEN
306 INFO = -3
307.LT. ELSE IF( KD0 ) THEN
308 INFO = -4
309.LT. ELSE IF( LDABKD+1 ) THEN
310 INFO = -6
311.LT..OR..AND..LT. ELSE IF( LDZ1 ( WANTZ LDZN ) ) THEN
312 INFO = -9
313 END IF
314*
315.EQ. IF( INFO0 ) THEN
316 WORK( 1 ) = LWMIN
317 IWORK( 1 ) = LIWMIN
318*
319.LT..AND..NOT. IF( LWORKLWMIN LQUERY ) THEN
320 INFO = -11
321.LT..AND..NOT. ELSE IF( LIWORKLIWMIN LQUERY ) THEN
322 INFO = -13
323 END IF
324 END IF
325*
326.NE. IF( INFO0 ) THEN
327 CALL XERBLA( 'dsbevd_2stage', -INFO )
328 RETURN
329 ELSE IF( LQUERY ) THEN
330 RETURN
331 END IF
332*
333* Quick return if possible
334*
335.EQ. IF( N0 )
336 $ RETURN
337*
338.EQ. IF( N1 ) THEN
339 W( 1 ) = AB( 1, 1 )
340 IF( WANTZ )
341 $ Z( 1, 1 ) = ONE
342 RETURN
343 END IF
344*
345* Get machine constants.
346*
347 SAFMIN = DLAMCH( 'safe minimum' )
348 EPS = DLAMCH( 'precision' )
349 SMLNUM = SAFMIN / EPS
350 BIGNUM = ONE / SMLNUM
351 RMIN = SQRT( SMLNUM )
352 RMAX = SQRT( BIGNUM )
353*
354* Scale matrix to allowable range, if necessary.
355*
356 ANRM = DLANSB( 'm', UPLO, N, KD, AB, LDAB, WORK )
357 ISCALE = 0
358.GT..AND..LT. IF( ANRMZERO ANRMRMIN ) THEN
359 ISCALE = 1
360 SIGMA = RMIN / ANRM
361.GT. ELSE IF( ANRMRMAX ) THEN
362 ISCALE = 1
363 SIGMA = RMAX / ANRM
364 END IF
365.EQ. IF( ISCALE1 ) THEN
366 IF( LOWER ) THEN
367 CALL DLASCL( 'b', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
368 ELSE
369 CALL DLASCL( 'q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
370 END IF
371 END IF
372*
373* Call DSYTRD_SB2ST to reduce band symmetric matrix to tridiagonal form.
374*
375 INDE = 1
376 INDHOUS = INDE + N
377 INDWRK = INDHOUS + LHTRD
378 LLWORK = LWORK - INDWRK + 1
379 INDWK2 = INDWRK + N*N
380 LLWRK2 = LWORK - INDWK2 + 1
381*
382 CALL DSYTRD_SB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
383 $ WORK( INDE ), WORK( INDHOUS ), LHTRD,
384 $ WORK( INDWRK ), LLWORK, IINFO )
385*
386* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
387*
388.NOT. IF( WANTZ ) THEN
389 CALL DSTERF( N, W, WORK( INDE ), INFO )
390 ELSE
391 CALL DSTEDC( 'i', N, W, WORK( INDE ), WORK( INDWRK ), N,
392 $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
393 CALL DGEMM( 'n', 'n', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
394 $ ZERO, WORK( INDWK2 ), N )
395 CALL DLACPY( 'a', N, N, WORK( INDWK2 ), N, Z, LDZ )
396 END IF
397*
398* If matrix was scaled, then rescale eigenvalues appropriately.
399*
400.EQ. IF( ISCALE1 )
401 $ CALL DSCAL( N, ONE / SIGMA, W, 1 )
402*
403 WORK( 1 ) = LWMIN
404 IWORK( 1 ) = LIWMIN
405 RETURN
406*
407* End of DSBEVD_2STAGE
408*
409 END
subroutine dsytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:188
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
double precision function dlansb(norm, uplo, n, k, ab, ldab, work)
DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansb.f:129
subroutine dsbevd_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:187