OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dsyevd.f
Go to the documentation of this file.
1*> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSYEVD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
22* LIWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER JOBZ, UPLO
26* INTEGER INFO, LDA, LIWORK, LWORK, N
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
40*> real symmetric matrix A. If eigenvectors are desired, it uses a
41*> divide and conquer algorithm.
42*>
43*> The divide and conquer algorithm makes very mild assumptions about
44*> floating point arithmetic. It will work on machines with a guard
45*> digit in add/subtract, or on those binary machines without guard
46*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
47*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
48*> without guard digits, but we know of none.
49*>
50*> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
51*> workspace than DSYEVX.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] JOBZ
58*> \verbatim
59*> JOBZ is CHARACTER*1
60*> = 'N': Compute eigenvalues only;
61*> = 'V': Compute eigenvalues and eigenvectors.
62*> \endverbatim
63*>
64*> \param[in] UPLO
65*> \verbatim
66*> UPLO is CHARACTER*1
67*> = 'U': Upper triangle of A is stored;
68*> = 'L': Lower triangle of A is stored.
69*> \endverbatim
70*>
71*> \param[in] N
72*> \verbatim
73*> N is INTEGER
74*> The order of the matrix A. N >= 0.
75*> \endverbatim
76*>
77*> \param[in,out] A
78*> \verbatim
79*> A is DOUBLE PRECISION array, dimension (LDA, N)
80*> On entry, the symmetric matrix A. If UPLO = 'U', the
81*> leading N-by-N upper triangular part of A contains the
82*> upper triangular part of the matrix A. If UPLO = 'L',
83*> the leading N-by-N lower triangular part of A contains
84*> the lower triangular part of the matrix A.
85*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
86*> orthonormal eigenvectors of the matrix A.
87*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
88*> or the upper triangle (if UPLO='U') of A, including the
89*> diagonal, is destroyed.
90*> \endverbatim
91*>
92*> \param[in] LDA
93*> \verbatim
94*> LDA is INTEGER
95*> The leading dimension of the array A. LDA >= max(1,N).
96*> \endverbatim
97*>
98*> \param[out] W
99*> \verbatim
100*> W is DOUBLE PRECISION array, dimension (N)
101*> If INFO = 0, the eigenvalues in ascending order.
102*> \endverbatim
103*>
104*> \param[out] WORK
105*> \verbatim
106*> WORK is DOUBLE PRECISION array,
107*> dimension (LWORK)
108*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
109*> \endverbatim
110*>
111*> \param[in] LWORK
112*> \verbatim
113*> LWORK is INTEGER
114*> The dimension of the array WORK.
115*> If N <= 1, LWORK must be at least 1.
116*> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
117*> If JOBZ = 'V' and N > 1, LWORK must be at least
118*> 1 + 6*N + 2*N**2.
119*>
120*> If LWORK = -1, then a workspace query is assumed; the routine
121*> only calculates the optimal sizes of the WORK and IWORK
122*> arrays, returns these values as the first entries of the WORK
123*> and IWORK arrays, and no error message related to LWORK or
124*> LIWORK is issued by XERBLA.
125*> \endverbatim
126*>
127*> \param[out] IWORK
128*> \verbatim
129*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
130*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
131*> \endverbatim
132*>
133*> \param[in] LIWORK
134*> \verbatim
135*> LIWORK is INTEGER
136*> The dimension of the array IWORK.
137*> If N <= 1, LIWORK must be at least 1.
138*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
139*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
140*>
141*> If LIWORK = -1, then a workspace query is assumed; the
142*> routine only calculates the optimal sizes of the WORK and
143*> IWORK arrays, returns these values as the first entries of
144*> the WORK and IWORK arrays, and no error message related to
145*> LWORK or LIWORK is issued by XERBLA.
146*> \endverbatim
147*>
148*> \param[out] INFO
149*> \verbatim
150*> INFO is INTEGER
151*> = 0: successful exit
152*> < 0: if INFO = -i, the i-th argument had an illegal value
153*> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
154*> to converge; i off-diagonal elements of an intermediate
155*> tridiagonal form did not converge to zero;
156*> if INFO = i and JOBZ = 'V', then the algorithm failed
157*> to compute an eigenvalue while working on the submatrix
158*> lying in rows and columns INFO/(N+1) through
159*> mod(INFO,N+1).
160*> \endverbatim
161*
162* Authors:
163* ========
164*
165*> \author Univ. of Tennessee
166*> \author Univ. of California Berkeley
167*> \author Univ. of Colorado Denver
168*> \author NAG Ltd.
169*
170*> \ingroup doubleSYeigen
171*
172*> \par Contributors:
173* ==================
174*>
175*> Jeff Rutter, Computer Science Division, University of California
176*> at Berkeley, USA \n
177*> Modified by Francoise Tisseur, University of Tennessee \n
178*> Modified description of INFO. Sven, 16 Feb 05. \n
179
180
181*>
182* =====================================================================
183 SUBROUTINE dsyevd( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
184 $ LIWORK, INFO )
185*
186* -- LAPACK driver routine --
187* -- LAPACK is a software package provided by Univ. of Tennessee, --
188* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
189*
190* .. Scalar Arguments ..
191 CHARACTER JOBZ, UPLO
192 INTEGER INFO, LDA, LIWORK, LWORK, N
193* ..
194* .. Array Arguments ..
195 INTEGER IWORK( * )
196 DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
197* ..
198*
199* =====================================================================
200*
201* .. Parameters ..
202 DOUBLE PRECISION ZERO, ONE
203 parameter( zero = 0.0d+0, one = 1.0d+0 )
204* ..
205* .. Local Scalars ..
206*
207 LOGICAL LOWER, LQUERY, WANTZ
208 INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
209 $ liopt, liwmin, llwork, llwrk2, lopt, lwmin
210 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
211 $ smlnum
212* ..
213* .. External Functions ..
214 LOGICAL LSAME
215 INTEGER ILAENV
216 DOUBLE PRECISION DLAMCH, DLANSY
217 EXTERNAL lsame, dlamch, dlansy, ilaenv
218* ..
219* .. External Subroutines ..
220 EXTERNAL dlacpy, dlascl, dormtr, dscal, dstedc, dsterf,
221 $ dsytrd, xerbla
222* ..
223* .. Intrinsic Functions ..
224 INTRINSIC max, sqrt
225* ..
226* .. Executable Statements ..
227*
228* Test the input parameters.
229*
230 wantz = lsame( jobz, 'V' )
231 lower = lsame( uplo, 'L' )
232 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
233*
234 info = 0
235 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
236 info = -1
237 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
238 info = -2
239 ELSE IF( n.LT.0 ) THEN
240 info = -3
241 ELSE IF( lda.LT.max( 1, n ) ) THEN
242 info = -5
243 END IF
244*
245 IF( info.EQ.0 ) THEN
246 IF( n.LE.1 ) THEN
247 liwmin = 1
248 lwmin = 1
249 lopt = lwmin
250 liopt = liwmin
251 ELSE
252 IF( wantz ) THEN
253 liwmin = 3 + 5*n
254 lwmin = 1 + 6*n + 2*n**2
255 ELSE
256 liwmin = 1
257 lwmin = 2*n + 1
258 END IF
259 lopt = max( lwmin, 2*n +
260 $ ilaenv( 1, 'DSYTRD', uplo, n, -1, -1, -1 ) )
261 liopt = liwmin
262 END IF
263 work( 1 ) = lopt
264 iwork( 1 ) = liopt
265*
266 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
267 info = -8
268 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
269 info = -10
270 END IF
271 END IF
272*
273 IF( info.NE.0 ) THEN
274 CALL xerbla( 'DSYEVD', -info )
275 RETURN
276 ELSE IF( lquery ) THEN
277 RETURN
278 END IF
279*
280* Quick return if possible
281*
282 IF( n.EQ.0 )
283 $ RETURN
284*
285 IF( n.EQ.1 ) THEN
286 w( 1 ) = a( 1, 1 )
287 IF( wantz )
288 $ a( 1, 1 ) = one
289 RETURN
290 END IF
291*
292* Get machine constants.
293*
294 safmin = dlamch( 'Safe minimum' )
295 eps = dlamch( 'Precision' )
296 smlnum = safmin / eps
297 bignum = one / smlnum
298 rmin = sqrt( smlnum )
299 rmax = sqrt( bignum )
300*
301* Scale matrix to allowable range, if necessary.
302*
303 anrm = dlansy( 'M', uplo, n, a, lda, work )
304 iscale = 0
305 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
306 iscale = 1
307 sigma = rmin / anrm
308 ELSE IF( anrm.GT.rmax ) THEN
309 iscale = 1
310 sigma = rmax / anrm
311 END IF
312 IF( iscale.EQ.1 )
313 $ CALL dlascl( uplo, 0, 0, one, sigma, n, n, a, lda, info )
314*
315* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
316*
317 inde = 1
318 indtau = inde + n
319 indwrk = indtau + n
320 llwork = lwork - indwrk + 1
321 indwk2 = indwrk + n*n
322 llwrk2 = lwork - indwk2 + 1
323*
324 CALL dsytrd( uplo, n, a, lda, w, work( inde ), work( indtau ),
325 $ work( indwrk ), llwork, iinfo )
326*
327* For eigenvalues only, call DSTERF. For eigenvectors, first call
328* DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
329* tridiagonal matrix, then call DORMTR to multiply it by the
330* Householder transformations stored in A.
331*
332 IF( .NOT.wantz ) THEN
333 CALL dsterf( n, w, work( inde ), info )
334 ELSE
335 CALL dstedc( 'I', n, w, work( inde ), work( indwrk ), n,
336 $ work( indwk2 ), llwrk2, iwork, liwork, info )
337 CALL dormtr( 'L', uplo, 'N', n, n, a, lda, work( indtau ),
338 $ work( indwrk ), n, work( indwk2 ), llwrk2, iinfo )
339 CALL dlacpy( 'A', n, n, work( indwrk ), n, a, lda )
340 END IF
341*
342* If matrix was scaled, then rescale eigenvalues appropriately.
343*
344 IF( iscale.EQ.1 )
345 $ CALL dscal( n, one / sigma, w, 1 )
346*
347 work( 1 ) = lopt
348 iwork( 1 ) = liopt
349*
350 RETURN
351*
352* End of DSYEVD
353*
354 END
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:188
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
DORMTR
Definition dormtr.f:171
subroutine dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
DSYTRD
Definition dsytrd.f:192
subroutine dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition dsyevd.f:185
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
#define max(a, b)
Definition macros.h:21