OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zsprfs.f
Go to the documentation of this file.
1*> \brief \b ZSPRFS
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZSPRFS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsprfs.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsprfs.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsprfs.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
22* FERR, BERR, WORK, RWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER UPLO
26* INTEGER INFO, LDB, LDX, N, NRHS
27* ..
28* .. Array Arguments ..
29* INTEGER IPIV( * )
30* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
31* COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
32* $ X( LDX, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> ZSPRFS improves the computed solution to a system of linear
42*> equations when the coefficient matrix is symmetric indefinite
43*> and packed, and provides error bounds and backward error estimates
44*> for the solution.
45*> \endverbatim
46*
47* Arguments:
48* ==========
49*
50*> \param[in] UPLO
51*> \verbatim
52*> UPLO is CHARACTER*1
53*> = 'U': Upper triangle of A is stored;
54*> = 'L': Lower triangle of A is stored.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The order of the matrix A. N >= 0.
61*> \endverbatim
62*>
63*> \param[in] NRHS
64*> \verbatim
65*> NRHS is INTEGER
66*> The number of right hand sides, i.e., the number of columns
67*> of the matrices B and X. NRHS >= 0.
68*> \endverbatim
69*>
70*> \param[in] AP
71*> \verbatim
72*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
73*> The upper or lower triangle of the symmetric matrix A, packed
74*> columnwise in a linear array. The j-th column of A is stored
75*> in the array AP as follows:
76*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
77*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
78*> \endverbatim
79*>
80*> \param[in] AFP
81*> \verbatim
82*> AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
83*> The factored form of the matrix A. AFP contains the block
84*> diagonal matrix D and the multipliers used to obtain the
85*> factor U or L from the factorization A = U*D*U**T or
86*> A = L*D*L**T as computed by ZSPTRF, stored as a packed
87*> triangular matrix.
88*> \endverbatim
89*>
90*> \param[in] IPIV
91*> \verbatim
92*> IPIV is INTEGER array, dimension (N)
93*> Details of the interchanges and the block structure of D
94*> as determined by ZSPTRF.
95*> \endverbatim
96*>
97*> \param[in] B
98*> \verbatim
99*> B is COMPLEX*16 array, dimension (LDB,NRHS)
100*> The right hand side matrix B.
101*> \endverbatim
102*>
103*> \param[in] LDB
104*> \verbatim
105*> LDB is INTEGER
106*> The leading dimension of the array B. LDB >= max(1,N).
107*> \endverbatim
108*>
109*> \param[in,out] X
110*> \verbatim
111*> X is COMPLEX*16 array, dimension (LDX,NRHS)
112*> On entry, the solution matrix X, as computed by ZSPTRS.
113*> On exit, the improved solution matrix X.
114*> \endverbatim
115*>
116*> \param[in] LDX
117*> \verbatim
118*> LDX is INTEGER
119*> The leading dimension of the array X. LDX >= max(1,N).
120*> \endverbatim
121*>
122*> \param[out] FERR
123*> \verbatim
124*> FERR is DOUBLE PRECISION array, dimension (NRHS)
125*> The estimated forward error bound for each solution vector
126*> X(j) (the j-th column of the solution matrix X).
127*> If XTRUE is the true solution corresponding to X(j), FERR(j)
128*> is an estimated upper bound for the magnitude of the largest
129*> element in (X(j) - XTRUE) divided by the magnitude of the
130*> largest element in X(j). The estimate is as reliable as
131*> the estimate for RCOND, and is almost always a slight
132*> overestimate of the true error.
133*> \endverbatim
134*>
135*> \param[out] BERR
136*> \verbatim
137*> BERR is DOUBLE PRECISION array, dimension (NRHS)
138*> The componentwise relative backward error of each solution
139*> vector X(j) (i.e., the smallest relative change in
140*> any element of A or B that makes X(j) an exact solution).
141*> \endverbatim
142*>
143*> \param[out] WORK
144*> \verbatim
145*> WORK is COMPLEX*16 array, dimension (2*N)
146*> \endverbatim
147*>
148*> \param[out] RWORK
149*> \verbatim
150*> RWORK is DOUBLE PRECISION array, dimension (N)
151*> \endverbatim
152*>
153*> \param[out] INFO
154*> \verbatim
155*> INFO is INTEGER
156*> = 0: successful exit
157*> < 0: if INFO = -i, the i-th argument had an illegal value
158*> \endverbatim
159*
160*> \par Internal Parameters:
161* =========================
162*>
163*> \verbatim
164*> ITMAX is the maximum number of steps of iterative refinement.
165*> \endverbatim
166*
167* Authors:
168* ========
169*
170*> \author Univ. of Tennessee
171*> \author Univ. of California Berkeley
172*> \author Univ. of Colorado Denver
173*> \author NAG Ltd.
174*
175*> \ingroup complex16OTHERcomputational
176*
177* =====================================================================
178 SUBROUTINE zsprfs( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
179 $ FERR, BERR, WORK, RWORK, INFO )
180*
181* -- LAPACK computational routine --
182* -- LAPACK is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 CHARACTER UPLO
187 INTEGER INFO, LDB, LDX, N, NRHS
188* ..
189* .. Array Arguments ..
190 INTEGER IPIV( * )
191 DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
192 COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
193 $ x( ldx, * )
194* ..
195*
196* =====================================================================
197*
198* .. Parameters ..
199 INTEGER ITMAX
200 parameter( itmax = 5 )
201 DOUBLE PRECISION ZERO
202 parameter( zero = 0.0d+0 )
203 COMPLEX*16 ONE
204 PARAMETER ( one = ( 1.0d+0, 0.0d+0 ) )
205 DOUBLE PRECISION TWO
206 parameter( two = 2.0d+0 )
207 DOUBLE PRECISION THREE
208 parameter( three = 3.0d+0 )
209* ..
210* .. Local Scalars ..
211 LOGICAL UPPER
212 INTEGER COUNT, I, IK, J, K, KASE, KK, NZ
213 DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
214 COMPLEX*16 ZDUM
215* ..
216* .. Local Arrays ..
217 INTEGER ISAVE( 3 )
218* ..
219* .. External Subroutines ..
220 EXTERNAL xerbla, zaxpy, zcopy, zlacn2, zspmv, zsptrs
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC abs, dble, dimag, max
224* ..
225* .. External Functions ..
226 LOGICAL LSAME
227 DOUBLE PRECISION DLAMCH
228 EXTERNAL lsame, dlamch
229* ..
230* .. Statement Functions ..
231 DOUBLE PRECISION CABS1
232* ..
233* .. Statement Function definitions ..
234 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
235* ..
236* .. Executable Statements ..
237*
238* Test the input parameters.
239*
240 info = 0
241 upper = lsame( uplo, 'U' )
242 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'l' ) ) THEN
243 INFO = -1
244.LT. ELSE IF( N0 ) THEN
245 INFO = -2
246.LT. ELSE IF( NRHS0 ) THEN
247 INFO = -3
248.LT. ELSE IF( LDBMAX( 1, N ) ) THEN
249 INFO = -8
250.LT. ELSE IF( LDXMAX( 1, N ) ) THEN
251 INFO = -10
252 END IF
253.NE. IF( INFO0 ) THEN
254 CALL XERBLA( 'zsprfs', -INFO )
255 RETURN
256 END IF
257*
258* Quick return if possible
259*
260.EQ..OR..EQ. IF( N0 NRHS0 ) THEN
261 DO 10 J = 1, NRHS
262 FERR( J ) = ZERO
263 BERR( J ) = ZERO
264 10 CONTINUE
265 RETURN
266 END IF
267*
268* NZ = maximum number of nonzero elements in each row of A, plus 1
269*
270 NZ = N + 1
271 EPS = DLAMCH( 'epsilon' )
272 SAFMIN = DLAMCH( 'safe minimum' )
273 SAFE1 = NZ*SAFMIN
274 SAFE2 = SAFE1 / EPS
275*
276* Do for each right hand side
277*
278 DO 140 J = 1, NRHS
279*
280 COUNT = 1
281 LSTRES = THREE
282 20 CONTINUE
283*
284* Loop until stopping criterion is satisfied.
285*
286* Compute residual R = B - A * X
287*
288 CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
289 CALL ZSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 )
290*
291* Compute componentwise relative backward error from formula
292*
293* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
294*
295* where abs(Z) is the componentwise absolute value of the matrix
296* or vector Z. If the i-th component of the denominator is less
297* than SAFE2, then SAFE1 is added to the i-th components of the
298* numerator and denominator before dividing.
299*
300 DO 30 I = 1, N
301 RWORK( I ) = CABS1( B( I, J ) )
302 30 CONTINUE
303*
304* Compute abs(A)*abs(X) + abs(B).
305*
306 KK = 1
307 IF( UPPER ) THEN
308 DO 50 K = 1, N
309 S = ZERO
310 XK = CABS1( X( K, J ) )
311 IK = KK
312 DO 40 I = 1, K - 1
313 RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
314 S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
315 IK = IK + 1
316 40 CONTINUE
317 RWORK( K ) = RWORK( K ) + CABS1( AP( KK+K-1 ) )*XK + S
318 KK = KK + K
319 50 CONTINUE
320 ELSE
321 DO 70 K = 1, N
322 S = ZERO
323 XK = CABS1( X( K, J ) )
324 RWORK( K ) = RWORK( K ) + CABS1( AP( KK ) )*XK
325 IK = KK + 1
326 DO 60 I = K + 1, N
327 RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
328 S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
329 IK = IK + 1
330 60 CONTINUE
331 RWORK( K ) = RWORK( K ) + S
332 KK = KK + ( N-K+1 )
333 70 CONTINUE
334 END IF
335 S = ZERO
336 DO 80 I = 1, N
337.GT. IF( RWORK( I )SAFE2 ) THEN
338 S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
339 ELSE
340 S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
341 $ ( RWORK( I )+SAFE1 ) )
342 END IF
343 80 CONTINUE
344 BERR( J ) = S
345*
346* Test stopping criterion. Continue iterating if
347* 1) The residual BERR(J) is larger than machine epsilon, and
348* 2) BERR(J) decreased by at least a factor of 2 during the
349* last iteration, and
350* 3) At most ITMAX iterations tried.
351*
352.GT..AND..LE..AND. IF( BERR( J )EPS TWO*BERR( J )LSTRES
353.LE. $ COUNTITMAX ) THEN
354*
355* Update solution and try again.
356*
357 CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
358 CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
359 LSTRES = BERR( J )
360 COUNT = COUNT + 1
361 GO TO 20
362 END IF
363*
364* Bound error from formula
365*
366* norm(X - XTRUE) / norm(X) .le. FERR =
367* norm( abs(inv(A))*
368* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
369*
370* where
371* norm(Z) is the magnitude of the largest component of Z
372* inv(A) is the inverse of A
373* abs(Z) is the componentwise absolute value of the matrix or
374* vector Z
375* NZ is the maximum number of nonzeros in any row of A, plus 1
376* EPS is machine epsilon
377*
378* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
379* is incremented by SAFE1 if the i-th component of
380* abs(A)*abs(X) + abs(B) is less than SAFE2.
381*
382* Use ZLACN2 to estimate the infinity-norm of the matrix
383* inv(A) * diag(W),
384* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
385*
386 DO 90 I = 1, N
387.GT. IF( RWORK( I )SAFE2 ) THEN
388 RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
389 ELSE
390 RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
391 $ SAFE1
392 END IF
393 90 CONTINUE
394*
395 KASE = 0
396 100 CONTINUE
397 CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
398.NE. IF( KASE0 ) THEN
399.EQ. IF( KASE1 ) THEN
400*
401* Multiply by diag(W)*inv(A**T).
402*
403 CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
404 DO 110 I = 1, N
405 WORK( I ) = RWORK( I )*WORK( I )
406 110 CONTINUE
407.EQ. ELSE IF( KASE2 ) THEN
408*
409* Multiply by inv(A)*diag(W).
410*
411 DO 120 I = 1, N
412 WORK( I ) = RWORK( I )*WORK( I )
413 120 CONTINUE
414 CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
415 END IF
416 GO TO 100
417 END IF
418*
419* Normalize error.
420*
421 LSTRES = ZERO
422 DO 130 I = 1, N
423 LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
424 130 CONTINUE
425.NE. IF( LSTRESZERO )
426 $ FERR( J ) = FERR( J ) / LSTRES
427*
428 140 CONTINUE
429*
430 RETURN
431*
432* End of ZSPRFS
433*
434 END
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine zspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
Definition zspmv.f:151
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:133
subroutine zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSPRFS
Definition zsprfs.f:180
subroutine zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
ZSPTRS
Definition zsptrs.f:115
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
#define max(a, b)
Definition macros.h:21