Functions | |
| subroutine | zbdt01 (m, n, kd, a, lda, q, ldq, d, e, pt, ldpt, work, rwork, resid) |
| ZBDT01 | |
| subroutine | zbdt02 (m, n, b, ldb, c, ldc, u, ldu, work, rwork, resid) |
| ZBDT02 | |
| subroutine | zbdt03 (uplo, n, kd, d, e, u, ldu, s, vt, ldvt, work, resid) |
| ZBDT03 | |
| subroutine | zchkbb (nsizes, mval, nval, nwdths, kk, ntypes, dotype, nrhs, iseed, thresh, nounit, a, lda, ab, ldab, bd, be, q, ldq, p, ldp, c, ldc, cc, work, lwork, rwork, result, info) |
| ZCHKBB | |
| subroutine | zchkbd (nsizes, mval, nval, ntypes, dotype, nrhs, iseed, thresh, a, lda, bd, be, s1, s2, x, ldx, y, z, q, ldq, pt, ldpt, u, vt, work, lwork, rwork, nout, info) |
| ZCHKBD | |
| subroutine | zchkbk (nin, nout) |
| ZCHKBK | |
| subroutine | zchkbl (nin, nout) |
| ZCHKBL | |
| subroutine | zchkec (thresh, tsterr, nin, nout) |
| ZCHKEC | |
| program | zchkee |
| ZCHKEE | |
| subroutine | zchkgg (nsizes, nn, ntypes, dotype, iseed, thresh, tstdif, thrshn, nounit, a, lda, b, h, t, s1, s2, p1, p2, u, ldu, v, q, z, alpha1, beta1, alpha3, beta3, evectl, evectr, work, lwork, rwork, llwork, result, info) |
| ZCHKGG | |
| subroutine | zchkgk (nin, nout) |
| ZCHKGK | |
| subroutine | zchkgl (nin, nout) |
| ZCHKGL | |
| subroutine | zchkhb (nsizes, nn, nwdths, kk, ntypes, dotype, iseed, thresh, nounit, a, lda, sd, se, u, ldu, work, lwork, rwork, result, info) |
| ZCHKHB | |
| subroutine | zchkhb2stg (nsizes, nn, nwdths, kk, ntypes, dotype, iseed, thresh, nounit, a, lda, sd, se, d1, d2, d3, u, ldu, work, lwork, rwork, result, info) |
| ZCHKHB2STG | |
| subroutine | zchkhs (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, t1, t2, u, ldu, z, uz, w1, w3, evectl, evectr, evecty, evectx, uu, tau, work, nwork, rwork, iwork, select, result, info) |
| ZCHKHS | |
| subroutine | zchkst (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, ap, sd, se, d1, d2, d3, d4, d5, wa1, wa2, wa3, wr, u, ldu, v, vp, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| ZCHKST | |
| subroutine | zchkst2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, ap, sd, se, d1, d2, d3, d4, d5, wa1, wa2, wa3, wr, u, ldu, v, vp, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| ZCHKST2STG | |
| subroutine | zckcsd (nm, mval, pval, qval, nmats, iseed, thresh, mmax, x, xf, u1, u2, v1t, v2t, theta, iwork, work, rwork, nin, nout, info) |
| ZCKCSD | |
| subroutine | zckglm (nn, nval, mval, pval, nmats, iseed, thresh, nmax, a, af, b, bf, x, work, rwork, nin, nout, info) |
| ZCKGLM | |
| subroutine | zckgqr (nm, mval, np, pval, nn, nval, nmats, iseed, thresh, nmax, a, af, aq, ar, taua, b, bf, bz, bt, bwk, taub, work, rwork, nin, nout, info) |
| ZCKGQR | |
| subroutine | zckgsv (nm, mval, pval, nval, nmats, iseed, thresh, nmax, a, af, b, bf, u, v, q, alpha, beta, r, iwork, work, rwork, nin, nout, info) |
| ZCKGSV | |
| subroutine | zcklse (nn, mval, pval, nval, nmats, iseed, thresh, nmax, a, af, b, bf, x, work, rwork, nin, nout, info) |
| ZCKLSE | |
| subroutine | zcsdts (m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, theta, iwork, work, lwork, rwork, result) |
| ZCSDTS | |
| subroutine | zdrges (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, alpha, beta, work, lwork, rwork, result, bwork, info) |
| ZDRGES | |
| subroutine | zdrges3 (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, alpha, beta, work, lwork, rwork, result, bwork, info) |
| ZDRGES3 | |
| subroutine | zdrgev (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, qe, ldqe, alpha, beta, alpha1, beta1, work, lwork, rwork, result, info) |
| ZDRGEV | |
| subroutine | zdrgev3 (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, qe, ldqe, alpha, beta, alpha1, beta1, work, lwork, rwork, result, info) |
| ZDRGEV3 | |
| subroutine | zdrgsx (nsize, ncmax, thresh, nin, nout, a, lda, b, ai, bi, z, q, alpha, beta, c, ldc, s, work, lwork, rwork, iwork, liwork, bwork, info) |
| ZDRGSX | |
| subroutine | zdrgvx (nsize, thresh, nin, nout, a, lda, b, ai, bi, alpha, beta, vl, vr, ilo, ihi, lscale, rscale, s, dtru, dif, diftru, work, lwork, rwork, iwork, liwork, result, bwork, info) |
| ZDRGVX | |
| subroutine | zdrvbd (nsizes, mm, nn, ntypes, dotype, iseed, thresh, a, lda, u, ldu, vt, ldvt, asav, usav, vtsav, s, ssav, e, work, lwork, rwork, iwork, nounit, info) |
| ZDRVBD | |
| subroutine | zdrves (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, ht, w, wt, vs, ldvs, result, work, nwork, rwork, iwork, bwork, info) |
| ZDRVES | |
| subroutine | zdrvev (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, result, work, nwork, rwork, iwork, info) |
| ZDRVEV | |
| subroutine | zdrvsg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, ldb, d, z, ldz, ab, bb, ap, bp, work, nwork, rwork, lrwork, iwork, liwork, result, info) |
| ZDRVSG | |
| subroutine | zdrvsg2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, ldb, d, d2, z, ldz, ab, bb, ap, bp, work, nwork, rwork, lrwork, iwork, liwork, result, info) |
| ZDRVSG2STG | |
| subroutine | zdrvst (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| ZDRVST | |
| subroutine | zdrvst2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| ZDRVST2STG | |
| subroutine | zdrvsx (nsizes, nn, ntypes, dotype, iseed, thresh, niunit, nounit, a, lda, h, ht, w, wt, wtmp, vs, ldvs, vs1, result, work, lwork, rwork, bwork, info) |
| ZDRVSX | |
| subroutine | zdrvvx (nsizes, nn, ntypes, dotype, iseed, thresh, niunit, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, nwork, rwork, info) |
| ZDRVVX | |
| subroutine | zerrbd (path, nunit) |
| ZERRBD | |
| subroutine | zerrec (path, nunit) |
| ZERREC | |
| subroutine | zerred (path, nunit) |
| ZERRED | |
| subroutine | zerrgg (path, nunit) |
| ZERRGG | |
| subroutine | zerrhs (path, nunit) |
| ZERRHS | |
| subroutine | zerrst (path, nunit) |
| ZERRST | |
| subroutine | zget02 (trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid) |
| ZGET02 | |
| subroutine | zget10 (m, n, a, lda, b, ldb, work, rwork, result) |
| ZGET10 | |
| subroutine | zget22 (transa, transe, transw, n, a, lda, e, lde, w, work, rwork, result) |
| ZGET22 | |
| subroutine | zget23 (comp, isrt, balanc, jtype, thresh, iseed, nounit, n, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, lwork, rwork, info) |
| ZGET23 | |
| subroutine | zget24 (comp, jtype, thresh, iseed, nounit, n, a, lda, h, ht, w, wt, wtmp, vs, ldvs, vs1, rcdein, rcdvin, nslct, islct, isrt, result, work, lwork, rwork, bwork, info) |
| ZGET24 | |
| subroutine | zget35 (rmax, lmax, ninfo, knt, nin) |
| ZGET35 | |
| subroutine | zget36 (rmax, lmax, ninfo, knt, nin) |
| ZGET36 | |
| subroutine | zget37 (rmax, lmax, ninfo, knt, nin) |
| ZGET37 | |
| subroutine | zget38 (rmax, lmax, ninfo, knt, nin) |
| ZGET38 | |
| subroutine | zget51 (itype, n, a, lda, b, ldb, u, ldu, v, ldv, work, rwork, result) |
| ZGET51 | |
| subroutine | zget52 (left, n, a, lda, b, ldb, e, lde, alpha, beta, work, rwork, result) |
| ZGET52 | |
| subroutine | zget54 (n, a, lda, b, ldb, s, lds, t, ldt, u, ldu, v, ldv, work, result) |
| ZGET54 | |
| subroutine | zglmts (n, m, p, a, af, lda, b, bf, ldb, d, df, x, u, work, lwork, rwork, result) |
| ZGLMTS | |
| subroutine | zgqrts (n, m, p, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result) |
| ZGQRTS | |
| subroutine | zgrqts (m, p, n, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result) |
| ZGRQTS | |
| subroutine | zgsvts3 (m, p, n, a, af, lda, b, bf, ldb, u, ldu, v, ldv, q, ldq, alpha, beta, r, ldr, iwork, work, lwork, rwork, result) |
| ZGSVTS3 | |
| subroutine | zhbt21 (uplo, n, ka, ks, a, lda, d, e, u, ldu, work, rwork, result) |
| ZHBT21 | |
| subroutine | zhet21 (itype, uplo, n, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, rwork, result) |
| ZHET21 | |
| subroutine | zhet22 (itype, uplo, n, m, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, rwork, result) |
| ZHET22 | |
| subroutine | zhpt21 (itype, uplo, n, kband, ap, d, e, u, ldu, vp, tau, work, rwork, result) |
| ZHPT21 | |
| subroutine | zhst01 (n, ilo, ihi, a, lda, h, ldh, q, ldq, work, lwork, rwork, result) |
| ZHST01 | |
| subroutine | zlarfy (uplo, n, v, incv, tau, c, ldc, work) |
| ZLARFY | |
| subroutine | zlarhs (path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info) |
| ZLARHS | |
| subroutine | zlatm4 (itype, n, nz1, nz2, rsign, amagn, rcond, triang, idist, iseed, a, lda) |
| ZLATM4 | |
| logical function | zlctes (z, d) |
| ZLCTES | |
| logical function | zlctsx (alpha, beta) |
| ZLCTSX | |
| subroutine | zlsets (m, p, n, a, af, lda, b, bf, ldb, c, cf, d, df, x, work, lwork, rwork, result) |
| ZLSETS | |
| subroutine | zsbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy) |
| ZSBMV | |
| subroutine | zsgt01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, rwork, result) |
| ZSGT01 | |
| logical function | zslect (z) |
| ZSLECT | |
| subroutine | zstt21 (n, kband, ad, ae, sd, se, u, ldu, work, rwork, result) |
| ZSTT21 | |
| subroutine | zstt22 (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, rwork, result) |
| ZSTT22 | |
| subroutine | zunt01 (rowcol, m, n, u, ldu, work, lwork, rwork, resid) |
| ZUNT01 | |
| subroutine | zunt03 (rc, mu, mv, n, k, u, ldu, v, ldv, work, lwork, rwork, result, info) |
| ZUNT03 | |
This is the group of complex16 LAPACK TESTING EIG routines.
| subroutine zbdt01 | ( | integer | m, |
| integer | n, | ||
| integer | kd, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldpt, * ) | pt, | ||
| integer | ldpt, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | resid ) |
ZBDT01
!> !> ZBDT01 reconstructs a general matrix A from its bidiagonal form !> A = Q * B * P**H !> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary !> matrices and B is bidiagonal. !> !> The test ratio to test the reduction is !> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> where EPS is the machine precision. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices A and Q. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and P**H. !> |
| [in] | KD | !> KD is INTEGER !> If KD = 0, B is diagonal and the array E is not referenced. !> If KD = 1, the reduction was performed by xGEBRD; B is upper !> bidiagonal if M >= N, and lower bidiagonal if M < N. !> If KD = -1, the reduction was performed by xGBBRD; B is !> always upper bidiagonal. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The m by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> The m by min(m,n) unitary matrix Q in the reduction !> A = Q * B * P**H. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,M). !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (min(M,N)-1) !> The superdiagonal elements of the bidiagonal matrix B if !> m >= n, or the subdiagonal elements of B if m < n. !> |
| [in] | PT | !> PT is COMPLEX*16 array, dimension (LDPT,N) !> The min(m,n) by n unitary matrix P**H in the reduction !> A = Q * B * P**H. !> |
| [in] | LDPT | !> LDPT is INTEGER !> The leading dimension of the array PT. !> LDPT >= max(1,min(M,N)). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M+N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESID | !> RESID is DOUBLE PRECISION !> The test ratio: !> norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> |
Definition at line 145 of file zbdt01.f.
| subroutine zbdt02 | ( | integer | m, |
| integer | n, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | resid ) |
ZBDT02
!> !> ZBDT02 tests the change of basis C = U**H * B by computing the !> residual !> !> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ), !> !> where B and C are M by N matrices, U is an M by M orthogonal matrix, !> and EPS is the machine precision. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices B and C and the order of !> the matrix Q. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices B and C. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> The m by n matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [in] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> The m by n matrix C, assumed to contain U**H * B. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU,M) !> The m by m orthogonal matrix U. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESID | !> RESID is DOUBLE PRECISION !> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ), !> |
Definition at line 118 of file zbdt02.f.
| subroutine zbdt03 | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| double precision, dimension( * ) | s, | ||
| complex*16, dimension( ldvt, * ) | vt, | ||
| integer | ldvt, | ||
| complex*16, dimension( * ) | work, | ||
| double precision | resid ) |
ZBDT03
!> !> ZBDT03 reconstructs a bidiagonal matrix B from its SVD: !> S = U' * B * V !> where U and V are orthogonal matrices and S is diagonal. !> !> The test ratio to test the singular value decomposition is !> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS ) !> where VT = V' and EPS is the machine precision. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the matrix B is upper or lower bidiagonal. !> = 'U': Upper bidiagonal !> = 'L': Lower bidiagonal !> |
| [in] | N | !> N is INTEGER !> The order of the matrix B. !> |
| [in] | KD | !> KD is INTEGER !> The bandwidth of the bidiagonal matrix B. If KD = 1, the !> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is !> not referenced. If KD is greater than 1, it is assumed to be !> 1, and if KD is less than 0, it is assumed to be 0. !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the bidiagonal matrix B. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) superdiagonal elements of the bidiagonal matrix B !> if UPLO = 'U', or the (n-1) subdiagonal elements of B if !> UPLO = 'L'. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU,N) !> The n by n orthogonal matrix U in the reduction B = U'*A*P. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,N) !> |
| [in] | S | !> S is DOUBLE PRECISION array, dimension (N) !> The singular values from the SVD of B, sorted in decreasing !> order. !> |
| [in] | VT | !> VT is COMPLEX*16 array, dimension (LDVT,N) !> The n by n orthogonal matrix V' in the reduction !> B = U * S * V'. !> |
| [in] | LDVT | !> LDVT is INTEGER !> The leading dimension of the array VT. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N) !> |
| [out] | RESID | !> RESID is DOUBLE PRECISION !> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS ) !> |
Definition at line 133 of file zbdt03.f.
| subroutine zchkbb | ( | integer | nsizes, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer | nrhs, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| double precision, dimension( * ) | bd, | ||
| double precision, dimension( * ) | be, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldp, * ) | p, | ||
| integer | ldp, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( ldc, * ) | cc, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZCHKBB
!> !> ZCHKBB tests the reduction of a general complex rectangular band !> matrix to real bidiagonal form. !> !> ZGBBRD factors a general band matrix A as Q B P* , where * means !> conjugate transpose, B is upper bidiagonal, and Q and P are unitary; !> ZGBBRD can also overwrite a given matrix C with Q* C . !> !> For each pair of matrix dimensions (M,N) and each selected matrix !> type, an M by N matrix A and an M by NRHS matrix C are generated. !> The problem dimensions are as follows !> A: M x N !> Q: M x M !> P: N x N !> B: min(M,N) x min(M,N) !> C: M x NRHS !> !> For each generated matrix, 4 tests are performed: !> !> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' !> !> (2) | I - Q' Q | / ( M ulp ) !> !> (3) | I - PT PT' | / ( N ulp ) !> !> (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. !> !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> The possible matrix types are !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (3), but multiplied by SQRT( overflow threshold ) !> (7) Same as (3), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U D V, where U and V are orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U D V, where U and V are orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U D V, where U and V are orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Rectangular matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of values of M and N contained in the vectors !> MVAL and NVAL. The matrix sizes are used in pairs (M,N). !> If NSIZES is zero, ZCHKBB does nothing. NSIZES must be at !> least zero. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NSIZES) !> The values of the matrix row dimension M. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NSIZES) !> The values of the matrix column dimension N. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> ZCHKBB does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKBB !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns in the matrix C. !> If NRHS = 0, then the operations on the right-hand side will !> not be tested. NRHS must be at least 0. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKBB to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is DOUBLE PRECISION array, dimension !> (LDA, max(NN)) !> Used to hold the matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least max( NN ). !> |
| [out] | AB | !> AB is DOUBLE PRECISION array, dimension (LDAB, max(NN)) !> Used to hold A in band storage format. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of AB. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | BD | !> BD is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the diagonal of the bidiagonal matrix computed !> by ZGBBRD. !> |
| [out] | BE | !> BE is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the off-diagonal of the bidiagonal matrix !> computed by ZGBBRD. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> Used to hold the unitary matrix Q computed by ZGBBRD. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q. It must be at least 1 !> and at least max( NN ). !> |
| [out] | P | !> P is COMPLEX*16 array, dimension (LDP, max(NN)) !> Used to hold the unitary matrix P computed by ZGBBRD. !> |
| [in] | LDP | !> LDP is INTEGER !> The leading dimension of P. It must be at least 1 !> and at least max( NN ). !> |
| [out] | C | !> C is COMPLEX*16 array, dimension (LDC, max(NN)) !> Used to hold the matrix C updated by ZGBBRD. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | CC | !> CC is COMPLEX*16 array, dimension (LDC, max(NN)) !> Used to hold a copy of the matrix C. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(NN)) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 357 of file zchkbb.f.
| subroutine zchkbd | ( | integer | nsizes, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | nval, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer | nrhs, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | bd, | ||
| double precision, dimension( * ) | be, | ||
| double precision, dimension( * ) | s1, | ||
| double precision, dimension( * ) | s2, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex*16, dimension( ldx, * ) | y, | ||
| complex*16, dimension( ldx, * ) | z, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldpt, * ) | pt, | ||
| integer | ldpt, | ||
| complex*16, dimension( ldpt, * ) | u, | ||
| complex*16, dimension( ldpt, * ) | vt, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nout, | ||
| integer | info ) |
ZCHKBD
!> !> ZCHKBD checks the singular value decomposition (SVD) routines. !> !> ZGEBRD reduces a complex general m by n matrix A to real upper or !> lower bidiagonal form by an orthogonal transformation: Q' * A * P = B !> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n !> and lower bidiagonal if m < n. !> !> ZUNGBR generates the orthogonal matrices Q and P' from ZGEBRD. !> Note that Q and P are not necessarily square. !> !> ZBDSQR computes the singular value decomposition of the bidiagonal !> matrix B as B = U S V'. It is called three times to compute !> 1) B = U S1 V', where S1 is the diagonal matrix of singular !> values and the columns of the matrices U and V are the left !> and right singular vectors, respectively, of B. !> 2) Same as 1), but the singular values are stored in S2 and the !> singular vectors are not computed. !> 3) A = (UQ) S (P'V'), the SVD of the original matrix A. !> In addition, ZBDSQR has an option to apply the left orthogonal matrix !> U to a matrix X, useful in least squares applications. !> !> For each pair of matrix dimensions (M,N) and each selected matrix !> type, an M by N matrix A and an M by NRHS matrix X are generated. !> The problem dimensions are as follows !> A: M x N !> Q: M x min(M,N) (but M x M if NRHS > 0) !> P: min(M,N) x N !> B: min(M,N) x min(M,N) !> U, V: min(M,N) x min(M,N) !> S1, S2 diagonal, order min(M,N) !> X: M x NRHS !> !> For each generated matrix, 14 tests are performed: !> !> Test ZGEBRD and ZUNGBR !> !> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' !> !> (2) | I - Q' Q | / ( M ulp ) !> !> (3) | I - PT PT' | / ( N ulp ) !> !> Test ZBDSQR on bidiagonal matrix B !> !> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' !> !> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X !> and Z = U' Y. !> (6) | I - U' U | / ( min(M,N) ulp ) !> !> (7) | I - VT VT' | / ( min(M,N) ulp ) !> !> (8) S1 contains min(M,N) nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (9) 0 if the true singular values of B are within THRESH of !> those in S1. 2*THRESH if they are not. (Tested using !> DSVDCH) !> !> (10) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without !> computing U and V. !> !> Test ZBDSQR on matrix A !> !> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) !> !> (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) !> !> (13) | I - (QU)'(QU) | / ( M ulp ) !> !> (14) | I - (VT PT) (PT'VT') | / ( N ulp ) !> !> The possible matrix types are !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (3), but multiplied by SQRT( overflow threshold ) !> (7) Same as (3), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U D V, where U and V are orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U D V, where U and V are orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U D V, where U and V are orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Rectangular matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> Special case: !> (16) A bidiagonal matrix with random entries chosen from a !> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each !> entry is e^x, where x is chosen uniformly on !> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type: !> (a) ZGEBRD is not called to reduce it to bidiagonal form. !> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the !> matrix will be lower bidiagonal, otherwise upper. !> (c) only tests 5--8 and 14 are performed. !> !> A subset of the full set of matrix types may be selected through !> the logical array DOTYPE. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of values of M and N contained in the vectors !> MVAL and NVAL. The matrix sizes are used in pairs (M,N). !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NM) !> The values of the matrix column dimension N. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKBD !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrices are in A and B. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix !> of type j will be generated. If NTYPES is smaller than the !> maximum number of types defined (PARAMETER MAXTYP), then !> types NTYPES+1 through MAXTYP will not be generated. If !> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through !> DOTYPE(NTYPES) will be ignored. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns in the matrices X, Y, !> and Z, used in testing ZBDSQR. If NRHS = 0, then the !> operations on the right-hand side will not be tested. !> NRHS must be at least 0. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The values of ISEED are changed on exit, and can be !> used in the next call to ZCHKBD to continue the same random !> number sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. Note that the !> expected value of the test ratios is O(1), so THRESH should !> be a reasonably small multiple of 1, e.g., 10 or 100. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA,NMAX) !> where NMAX is the maximum value of N in NVAL. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,MMAX), !> where MMAX is the maximum value of M in MVAL. !> |
| [out] | BD | !> BD is DOUBLE PRECISION array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | BE | !> BE is DOUBLE PRECISION array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | S1 | !> S1 is DOUBLE PRECISION array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | S2 | !> S2 is DOUBLE PRECISION array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the arrays X, Y, and Z. !> LDX >= max(1,MMAX). !> |
| [out] | Y | !> Y is COMPLEX*16 array, dimension (LDX,NRHS) !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDX,NRHS) !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,MMAX) !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,MMAX). !> |
| [out] | PT | !> PT is COMPLEX*16 array, dimension (LDPT,NMAX) !> |
| [in] | LDPT | !> LDPT is INTEGER !> The leading dimension of the arrays PT, U, and V. !> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). !> |
| [out] | U | !> U is COMPLEX*16 array, dimension !> (LDPT,max(min(MVAL(j),NVAL(j)))) !> |
| [out] | VT | !> VT is COMPLEX*16 array, dimension !> (LDPT,max(min(MVAL(j),NVAL(j)))) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all !> pairs (M,N)=(MM(j),NN(j)) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension !> (5*max(min(M,N))) !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some MM(j) < 0 !> -3: Some NN(j) < 0 !> -4: NTYPES < 0 !> -6: NRHS < 0 !> -8: THRESH < 0 !> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). !> -17: LDB < 1 or LDB < MMAX. !> -21: LDQ < 1 or LDQ < MMAX. !> -23: LDP < 1 or LDP < MNMAX. !> -27: LWORK too small. !> If ZLATMR, CLATMS, ZGEBRD, ZUNGBR, or ZBDSQR, !> returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> MMAX Largest value in NN. !> NMAX Largest value in NN. !> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal !> matrix.) !> MNMAX The maximum value of MNMIN for j=1,...,NSIZES. !> NFAIL The number of tests which have exceeded THRESH !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> ULP, ULPINV Finest relative precision and its inverse. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 411 of file zchkbd.f.
| subroutine zchkbk | ( | integer | nin, |
| integer | nout ) |
ZCHKBK
!> !> ZCHKBK tests ZGEBAK, a routine for backward transformation of !> the computed right or left eigenvectors if the original matrix !> was preprocessed by balance subroutine ZGEBAL. !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 54 of file zchkbk.f.
| subroutine zchkbl | ( | integer | nin, |
| integer | nout ) |
ZCHKBL
!> !> ZCHKBL tests ZGEBAL, a routine for balancing a general complex !> matrix and isolating some of its eigenvalues. !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 53 of file zchkbl.f.
| subroutine zchkec | ( | double precision | thresh, |
| logical | tsterr, | ||
| integer | nin, | ||
| integer | nout ) |
ZCHKEC
!> !> ZCHKEC tests eigen- condition estimation routines !> ZTRSYL, CTREXC, CTRSNA, CTRSEN !> !> In all cases, the routine runs through a fixed set of numerical !> examples, subjects them to various tests, and compares the test !> results to a threshold THRESH. In addition, ZTRSNA and CTRSEN are !> tested by reading in precomputed examples from a file (on input unit !> NIN). Output is written to output unit NOUT. !>
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> Threshold for residual tests. A computed test ratio passes !> the threshold if it is less than THRESH. !> |
| [in] | TSTERR | !> TSTERR is LOGICAL !> Flag that indicates whether error exits are to be tested. !> |
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. !> |
Definition at line 74 of file zchkec.f.
| program zchkee |
ZCHKEE
!> !> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix !> eigenvalue problem. The test paths in this version are !> !> NEP (Nonsymmetric Eigenvalue Problem): !> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR !> !> SEP (Hermitian Eigenvalue Problem): !> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC, !> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X), !> ZHEEVD, ZHBEVD, ZHPEVD !> !> SVD (Singular Value Decomposition): !> Test ZGEBRD, ZUNGBR, and ZBDSQR !> and the drivers ZGESVD, ZGESDD !> !> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver): !> Test ZGEEV !> !> ZES (Nonsymmetric Schur form Driver): !> Test ZGEES !> !> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): !> Test ZGEEVX !> !> ZSX (Nonsymmetric Schur form Expert Driver): !> Test ZGEESX !> !> ZGG (Generalized Nonsymmetric Eigenvalue Problem): !> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC !> !> ZGS (Generalized Nonsymmetric Schur form Driver): !> Test ZGGES !> !> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): !> Test ZGGEV !> !> ZGX (Generalized Nonsymmetric Schur form Expert Driver): !> Test ZGGESX !> !> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): !> Test ZGGEVX !> !> ZSG (Hermitian Generalized Eigenvalue Problem): !> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD, !> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX !> !> ZHB (Hermitian Band Eigenvalue Problem): !> Test ZHBTRD !> !> ZBB (Band Singular Value Decomposition): !> Test ZGBBRD !> !> ZEC (Eigencondition estimation): !> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN !> !> ZBL (Balancing a general matrix) !> Test ZGEBAL !> !> ZBK (Back transformation on a balanced matrix) !> Test ZGEBAK !> !> ZGL (Balancing a matrix pair) !> Test ZGGBAL !> !> ZGK (Back transformation on a matrix pair) !> Test ZGGBAK !> !> GLM (Generalized Linear Regression Model): !> Tests ZGGGLM !> !> GQR (Generalized QR and RQ factorizations): !> Tests ZGGQRF and ZGGRQF !> !> GSV (Generalized Singular Value Decomposition): !> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT !> !> CSD (CS decomposition): !> Tests ZUNCSD !> !> LSE (Constrained Linear Least Squares): !> Tests ZGGLSE !> !> Each test path has a different set of inputs, but the data sets for !> the driver routines xEV, xES, xVX, and xSX can be concatenated in a !> single input file. The first line of input should contain one of the !> 3-character path names in columns 1-3. The number of remaining lines !> depends on what is found on the first line. !> !> The number of matrix types used in testing is often controllable from !> the input file. The number of matrix types for each path, and the !> test routine that describes them, is as follows: !> !> Path name(s) Types Test routine !> !> ZHS or NEP 21 ZCHKHS !> ZST or SEP 21 ZCHKST (routines) !> 18 ZDRVST (drivers) !> ZBD or SVD 16 ZCHKBD (routines) !> 5 ZDRVBD (drivers) !> ZEV 21 ZDRVEV !> ZES 21 ZDRVES !> ZVX 21 ZDRVVX !> ZSX 21 ZDRVSX !> ZGG 26 ZCHKGG (routines) !> ZGS 26 ZDRGES !> ZGX 5 ZDRGSX !> ZGV 26 ZDRGEV !> ZXV 2 ZDRGVX !> ZSG 21 ZDRVSG !> ZHB 15 ZCHKHB !> ZBB 15 ZCHKBB !> ZEC - ZCHKEC !> ZBL - ZCHKBL !> ZBK - ZCHKBK !> ZGL - ZCHKGL !> ZGK - ZCHKGK !> GLM 8 ZCKGLM !> GQR 8 ZCKGQR !> GSV 8 ZCKGSV !> CSD 3 ZCKCSD !> LSE 8 ZCKLSE !> !>----------------------------------------------------------------------- !> !> NEP input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, NX, NS, and !> MAXB. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 7: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 8: INMIN, INTEGER array, dimension (NPARMS) !> LAHQR vs TTQRE crossover point, >= 11 !> !> line 9: INWIN, INTEGER array, dimension (NPARMS) !> recommended deflation window size !> !> line 10: INIBL, INTEGER array, dimension (NPARMS) !> nibble crossover point !> !> line 11: ISHFTS, INTEGER array, dimension (NPARMS) !> number of simultaneous shifts) !> !> line 12: IACC22, INTEGER array, dimension (NPARMS) !> select structured matrix multiply: 0, 1 or 2) !> !> line 13: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. To have all of the test !> ratios printed, use THRESH = 0.0 . !> !> line 14: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 14 was 2: !> !> line 15: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow !> the user to specify the matrix types. Each line contains !> a 3-character path name in columns 1-3, and the number !> of matrix types must be the first nonblank item in columns !> 4-80. If the number of matrix types is at least 1 but is !> less than the maximum number of possible types, a second !> line will be read to get the numbers of the matrix types to !> be used. For example, !> NEP 21 !> requests all of the matrix types for the nonsymmetric !> eigenvalue problem, while !> NEP 4 !> 9 10 11 12 !> requests only matrices of type 9, 10, 11, and 12. !> !> The valid 3-character path names are 'NEP' or 'ZHS' for the !> nonsymmetric eigenvalue routines. !> !>----------------------------------------------------------------------- !> !> SEP or ZSG input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, and NX. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 7: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 8: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 9: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 10: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 11: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 12: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 12 was 2: !> !> line 13: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 13-EOF: Lines specifying matrix types, as for NEP. !> The valid 3-character path names are 'SEP' or 'ZST' for the !> Hermitian eigenvalue routines and driver routines, and !> 'ZSG' for the routines for the Hermitian generalized !> eigenvalue problem. !> !>----------------------------------------------------------------------- !> !> SVD input file: !> !> line 2: NN, INTEGER !> Number of values of M and N. !> !> line 3: MVAL, INTEGER array, dimension (NN) !> The values for the matrix row dimension M. !> !> line 4: NVAL, INTEGER array, dimension (NN) !> The values for the matrix column dimension N. !> !> line 5: NPARMS, INTEGER !> Number of values of the parameter NB, NBMIN, NX, and NRHS. !> !> line 6: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 7: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 8: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 9: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of right hand sides NRHS. !> !> line 10: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 11: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 12: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 13: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 14: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 14 was 2: !> !> line 15: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 15-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path names are 'SVD' or 'ZBD' for both the !> SVD routines and the SVD driver routines. !> !>----------------------------------------------------------------------- !> !> ZEV and ZES data files: !> !> line 1: 'ZEV' or 'ZES' in columns 1 to 3. !> !> line 2: NSIZES, INTEGER !> Number of sizes of matrices to use. Should be at least 0 !> and at most 20. If NSIZES = 0, no testing is done !> (although the remaining 3 lines are still read). !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> Dimensions of matrices to be tested. !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHSEQR !> NBCOL : minimum column dimension for blocking !> !> line 5: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> If it is 0., all test case data will be printed. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 8 and following: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'ZEV' to test CGEEV, or !> 'ZES' to test CGEES. !> !>----------------------------------------------------------------------- !> !> The ZVX data has two parts. The first part is identical to ZEV, !> and the second part consists of test matrices with precomputed !> solutions. !> !> line 1: 'ZVX' in columns 1-3. !> !> line 2: NSIZES, INTEGER !> If NSIZES = 0, no testing of randomly generated examples !> is done, but any precomputed examples are tested. !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> !> line 5: THRESH, REAL !> !> line 6: NEWSD, INTEGER !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> !> lines 8 and following: The first line contains 'ZVX' in columns 1-3 !> followed by the number of matrix types, possibly with !> a second line to specify certain matrix types. !> If the number of matrix types = 0, no testing of randomly !> generated examples is done, but any precomputed examples !> are tested. !> !> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is !> its dimension. The first line contains the dimension N and !> ISRT (two integers). ISRT indicates whether the last N lines !> are sorted by increasing real part of the eigenvalue !> (ISRT=0) or by increasing imaginary part (ISRT=1). The next !> N**2 lines contain the matrix rowwise, one entry per line. !> The last N lines correspond to each eigenvalue. Each of !> these last N lines contains 4 real values: the real part of !> the eigenvalues, the imaginary part of the eigenvalue, the !> reciprocal condition number of the eigenvalues, and the !> reciprocal condition number of the vector eigenvector. The !> end of data is indicated by dimension N=0. Even if no data !> is to be tested, there must be at least one line containing !> N=0. !> !>----------------------------------------------------------------------- !> !> The ZSX data is like ZVX. The first part is identical to ZEV, and the !> second part consists of test matrices with precomputed solutions. !> !> line 1: 'ZSX' in columns 1-3. !> !> line 2: NSIZES, INTEGER !> If NSIZES = 0, no testing of randomly generated examples !> is done, but any precomputed examples are tested. !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> !> line 5: THRESH, REAL !> !> line 6: NEWSD, INTEGER !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> !> lines 8 and following: The first line contains 'ZSX' in columns 1-3 !> followed by the number of matrix types, possibly with !> a second line to specify certain matrix types. !> If the number of matrix types = 0, no testing of randomly !> generated examples is done, but any precomputed examples !> are tested. !> !> remaining lines : Each matrix is stored on 3+N**2 lines, where N is !> its dimension. The first line contains the dimension N, the !> dimension M of an invariant subspace, and ISRT. The second !> line contains M integers, identifying the eigenvalues in the !> invariant subspace (by their position in a list of !> eigenvalues ordered by increasing real part (if ISRT=0) or !> by increasing imaginary part (if ISRT=1)). The next N**2 !> lines contain the matrix rowwise. The last line contains the !> reciprocal condition number for the average of the selected !> eigenvalues, and the reciprocal condition number for the !> corresponding right invariant subspace. The end of data in !> indicated by a line containing N=0, M=0, and ISRT = 0. Even !> if no data is to be tested, there must be at least one line !> containing N=0, M=0 and ISRT=0. !> !>----------------------------------------------------------------------- !> !> ZGG input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, NBCOL, NS, and !> MAXB. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for NBMIN, the minimum row dimension for blocks. !> !> line 7: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of shifts. !> !> line 8: MXBVAL, INTEGER array, dimension (NPARMS) !> The values for MAXB, used in determining minimum blocksize. !> !> line 9: IACC22, INTEGER array, dimension (NPARMS) !> select structured matrix multiply: 1 or 2) !> !> line 10: NBCOL, INTEGER array, dimension (NPARMS) !> The values for NBCOL, the minimum column dimension for !> blocks. !> !> line 11: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 12: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 13: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 14: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 15: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 15 was 2: !> !> line 16: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 17-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'ZGG' for the generalized !> eigenvalue problem routines and driver routines. !> !>----------------------------------------------------------------------- !> !> ZGS and ZGV input files: !> !> line 1: 'ZGS' or 'ZGV' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension(NN) !> Dimensions of matrices to be tested. !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 5: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> If it is 0., all test case data will be printed. !> !> line 6: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits. !> !> line 7: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 17 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 7-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'ZGS' for the generalized !> eigenvalue problem routines and driver routines. !> !>----------------------------------------------------------------------- !> !> ZGX input file: !> line 1: 'ZGX' in columns 1 to 3. !> !> line 2: N, INTEGER !> Value of N. !> !> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 4: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> Information will be printed about each test for which the !> test ratio is greater than or equal to the threshold. !> !> line 5: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> If line 2 was 0: !> !> line 7-EOF: Precomputed examples are tested. !> !> remaining lines : Each example is stored on 3+2*N*N lines, where N is !> its dimension. The first line contains the dimension (a !> single integer). The next line contains an integer k such !> that only the last k eigenvalues will be selected and appear !> in the leading diagonal blocks of $A$ and $B$. The next N*N !> lines contain the matrix A, one element per line. The next N*N !> lines contain the matrix B. The last line contains the !> reciprocal of the eigenvalue cluster condition number and the !> reciprocal of the deflating subspace (associated with the !> selected eigencluster) condition number. The end of data is !> indicated by dimension N=0. Even if no data is to be tested, !> there must be at least one line containing N=0. !> !>----------------------------------------------------------------------- !> !> ZXV input files: !> line 1: 'ZXV' in columns 1 to 3. !> !> line 2: N, INTEGER !> Value of N. !> !> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 4: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> Information will be printed about each test for which the !> test ratio is greater than or equal to the threshold. !> !> line 5: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> If line 2 was 0: !> !> line 7-EOF: Precomputed examples are tested. !> !> remaining lines : Each example is stored on 3+2*N*N lines, where N is !> its dimension. The first line contains the dimension (a !> single integer). The next N*N lines contain the matrix A, one !> element per line. The next N*N lines contain the matrix B. !> The next line contains the reciprocals of the eigenvalue !> condition numbers. The last line contains the reciprocals of !> the eigenvector condition numbers. The end of data is !> indicated by dimension N=0. Even if no data is to be tested, !> there must be at least one line containing N=0. !> !>----------------------------------------------------------------------- !> !> ZHB input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NK, INTEGER !> Number of values of K. !> !> line 5: KVAL, INTEGER array, dimension (NK) !> The values for the matrix dimension K. !> !> line 6: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 7 was 2: !> !> line 8: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 8-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'ZHB'. !> !>----------------------------------------------------------------------- !> !> ZBB input file: !> !> line 2: NN, INTEGER !> Number of values of M and N. !> !> line 3: MVAL, INTEGER array, dimension (NN) !> The values for the matrix row dimension M. !> !> line 4: NVAL, INTEGER array, dimension (NN) !> The values for the matrix column dimension N. !> !> line 4: NK, INTEGER !> Number of values of K. !> !> line 5: KVAL, INTEGER array, dimension (NK) !> The values for the matrix bandwidth K. !> !> line 6: NPARMS, INTEGER !> Number of values of the parameter NRHS !> !> line 7: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of right hand sides NRHS. !> !> line 8: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 9: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 9 was 2: !> !> line 10: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 10-EOF: Lines specifying matrix types, as for SVD. !> The 3-character path name is 'ZBB'. !> !>----------------------------------------------------------------------- !> !> ZEC input file: !> !> line 2: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> lines 3-EOF: !> !> Input for testing the eigencondition routines consists of a set of !> specially constructed test cases and their solutions. The data !> format is not intended to be modified by the user. !> !>----------------------------------------------------------------------- !> !> ZBL and ZBK input files: !> !> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in !> columns 1-3 to test CGEBAK. !> !> The remaining lines consist of specially constructed test cases. !> !>----------------------------------------------------------------------- !> !> ZGL and ZGK input files: !> !> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in !> columns 1-3 to test ZGGBAK. !> !> The remaining lines consist of specially constructed test cases. !> !>----------------------------------------------------------------------- !> !> GLM data file: !> !> line 1: 'GLM' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M (row dimension). !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P (row dimension). !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N (column dimension), note M <= N <= M+P. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GLM' for the generalized !> linear regression model routines. !> !>----------------------------------------------------------------------- !> !> GQR data file: !> !> line 1: 'GQR' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M. !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P. !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GQR' for the generalized !> QR and RQ routines. !> !>----------------------------------------------------------------------- !> !> GSV data file: !> !> line 1: 'GSV' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M (row dimension). !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P (row dimension). !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N (column dimension). !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GSV' for the generalized !> SVD routines. !> !>----------------------------------------------------------------------- !> !> CSD data file: !> !> line 1: 'CSD' in columns 1 to 3. !> !> line 2: NM, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NM) !> Values of M (row and column dimension of orthogonal matrix). !> !> line 4: PVAL, INTEGER array, dimension(NM) !> Values of P (row dimension of top-left block). !> !> line 5: NVAL, INTEGER array, dimension(NM) !> Values of N (column dimension of top-left block). !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CSD' for the CSD routine. !> !>----------------------------------------------------------------------- !> !> LSE data file: !> !> line 1: 'LSE' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M. !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P. !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N, note P <= N <= P+M. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GSV' for the generalized !> SVD routines. !> !>----------------------------------------------------------------------- !> !> NMAX is currently set to 132 and must be at least 12 for some of the !> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter !> statements below. For SVD, we assume NRHS may be as big as N. The !> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG. !>
| subroutine zchkgg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| logical | tstdif, | ||
| double precision | thrshn, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( lda, * ) | t, | ||
| complex*16, dimension( lda, * ) | s1, | ||
| complex*16, dimension( lda, * ) | s2, | ||
| complex*16, dimension( lda, * ) | p1, | ||
| complex*16, dimension( lda, * ) | p2, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | v, | ||
| complex*16, dimension( ldu, * ) | q, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( * ) | alpha1, | ||
| complex*16, dimension( * ) | beta1, | ||
| complex*16, dimension( * ) | alpha3, | ||
| complex*16, dimension( * ) | beta3, | ||
| complex*16, dimension( ldu, * ) | evectl, | ||
| complex*16, dimension( ldu, * ) | evectr, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| logical, dimension( * ) | llwork, | ||
| double precision, dimension( 15 ) | result, | ||
| integer | info ) |
ZCHKGG
!> !> ZCHKGG checks the nonsymmetric generalized eigenvalue problem !> routines. !> H H H !> ZGGHRD factors A and B as U H V and U T V , where means conjugate !> transpose, H is hessenberg, T is triangular and U and V are unitary. !> !> H H !> ZHGEQZ factors H and T as Q S Z and Q P Z , where P and S are upper !> triangular and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where !> alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j) !> is a root of the generalized eigenvalue problem !> !> det( A - w(j) B ) = 0 !> !> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent !> problem !> !> det( m(j) A - B ) = 0 !> !> ZTGEVC computes the matrix L of left eigenvectors and the matrix R !> of right eigenvectors for the matrix pair ( S, P ). In the !> description below, l and r are left and right eigenvectors !> corresponding to the generalized eigenvalues (alpha,beta). !> !> When ZCHKGG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 13 !> tests will be performed. The first twelve should be !> small -- O(1). They will be compared with the threshold THRESH: !> !> H !> (1) | A - U H V | / ( |A| n ulp ) !> !> H !> (2) | B - U T V | / ( |B| n ulp ) !> !> H !> (3) | I - UU | / ( n ulp ) !> !> H !> (4) | I - VV | / ( n ulp ) !> !> H !> (5) | H - Q S Z | / ( |H| n ulp ) !> !> H !> (6) | T - Q P Z | / ( |T| n ulp ) !> !> H !> (7) | I - QQ | / ( n ulp ) !> !> H !> (8) | I - ZZ | / ( n ulp ) !> !> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of !> H !> | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) ) !> !> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of !> H !> | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) ) !> !> where the eigenvectors l' are the result of passing Q to !> DTGEVC and back transforming (JOB='B'). !> !> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of !> !> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) ) !> !> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of !> !> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) ) !> !> where the eigenvectors r' are the result of passing Z to !> DTGEVC and back transforming (JOB='B'). !> !> The last three test ratios will usually be small, but there is no !> mathematical requirement that they be so. They are therefore !> compared with THRESH only if TSTDIF is .TRUE. !> !> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp ) !> !> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp ) !> !> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| , !> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp !> !> In addition, the normalization of L and R are checked, and compared !> with the threshold THRSHN. !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is P*D1, P is a random unitary diagonal !> matrix (i.e., with random magnitude 1 entries !> on the diagonal), and D1=diag( 0, 1,..., N-1 ) !> (i.e., a diagonal matrix with D1(1,1)=0, !> D1(2,2)=1, ..., D1(N,N)=N-1.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and !> D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and !> P and Q are random unitary diagonal matrices. !> t t !> (16) U ( J , J ) V where U and V are random unitary matrices. !> !> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> Q*( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) U ( big*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) U ( small*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) U ( big*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular !> matrices. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKGG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKGG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKGG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | TSTDIF | !> TSTDIF is LOGICAL !> Specifies whether test ratios 13-15 will be computed and !> compared with THRESH. !> = .FALSE.: Only test ratios 1-12 will be computed and tested. !> Ratios 13-15 will be set to zero. !> = .TRUE.: All the test ratios 1-15 will be computed and !> tested. !> |
| [in] | THRSHN | !> THRSHN is DOUBLE PRECISION !> Threshold for reporting eigenvector normalization error. !> If the normalization of any eigenvector differs from 1 by !> more than THRSHN*ulp, then a special error message will be !> printed. (This is handled separately from the other tests, !> since only a compiler or programming error should cause an !> error message, at least if THRSHN is at least 5--10.) !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, H, T, S1, P1, S2, and P2. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper Hessenberg matrix computed from A by ZGGHRD. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGHRD. !> |
| [out] | S1 | !> S1 is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur (upper triangular) matrix computed from H by ZHGEQZ !> when Q and Z are also computed. !> |
| [out] | S2 | !> S2 is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur (upper triangular) matrix computed from H by ZHGEQZ !> when Q and Z are not computed. !> |
| [out] | P1 | !> P1 is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from T by ZHGEQZ !> when Q and Z are also computed. !> |
| [out] | P2 | !> P2 is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from T by ZHGEQZ !> when Q and Z are not computed. !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by ZGGHRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR. It !> must be at least 1 and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (right) unitary matrix computed by ZGGHRD. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by ZHGEQZ. !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by ZHGEQZ. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX*16 array, dimension (max(NN)) !> The generalized eigenvalues of (A,B) computed by ZHGEQZ !> when Q, Z, and the full Schur matrices are computed. !> |
| [out] | ALPHA3 | !> ALPHA3 is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA3 | !> BETA3 is COMPLEX*16 array, dimension (max(NN)) !> The generalized eigenvalues of (A,B) computed by ZHGEQZ !> when neither Q, Z, nor the Schur matrices are computed. !> |
| [out] | EVECTL | !> EVECTL is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (lower triangular) left eigenvector matrix for the !> matrices in S1 and P1. !> |
| [out] | EVECTR | !> EVECTR is COMPLEX*16 array, dimension (LDU, max(NN)) !> The (upper triangular) right eigenvector matrix for the !> matrices in S1 and P1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( 4*N, 2 * N**2, 1 ), for all N=NN(j). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*max(NN)) !> |
| [out] | LLWORK | !> LLWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 498 of file zchkgg.f.
| subroutine zchkgk | ( | integer | nin, |
| integer | nout ) |
ZCHKGK
!> !> ZCHKGK tests ZGGBAK, a routine for backward balancing of !> a matrix pair (A, B). !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 53 of file zchkgk.f.
| subroutine zchkgl | ( | integer | nin, |
| integer | nout ) |
ZCHKGL
!> !> ZCHKGL tests ZGGBAL, a routine for balancing a matrix pair (A, B). !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 52 of file zchkgl.f.
| subroutine zchkhb | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZCHKHB
!> !> ZCHKHB tests the reduction of a Hermitian band matrix to tridiagonal !> from, used with the Hermitian eigenvalue problem. !> !> ZHBTRD factors a Hermitian band matrix A as U S U* , where * means !> conjugate transpose, S is symmetric tridiagonal, and U is unitary. !> ZHBTRD can use either just the lower or just the upper triangle !> of A; ZCHKHB checks both cases. !> !> When ZCHKHB is called, a number of matrix (), a number !> of bandwidths (), and a number of matrix are !> specified. For each size (), each bandwidth () less than or !> equal to , and each type of matrix, one matrix will be generated !> and used to test the hermitian banded reduction routine. For each !> matrix, a number of tests will be performed: !> !> (1) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with !> UPLO='U' !> !> (2) | I - UU* | / ( n ulp ) !> !> (3) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with !> UPLO='L' !> !> (4) | I - UU* | / ( n ulp ) !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKHB does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> ZCHKHB does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKHB !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKHB to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension !> (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | SD | !> SD is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the diagonal of the tridiagonal matrix computed !> by ZHBTRD. !> |
| [out] | SE | !> SE is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the off-diagonal of the tridiagonal matrix !> computed by ZHBTRD. !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU, max(NN)) !> Used to hold the unitary matrix computed by ZHBTRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 295 of file zchkhb.f.
| subroutine zchkhb2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| double precision, dimension( * ) | d1, | ||
| double precision, dimension( * ) | d2, | ||
| double precision, dimension( * ) | d3, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZCHKHB2STG
!> !> ZCHKHB2STG tests the reduction of a Hermitian band matrix to tridiagonal !> from, used with the Hermitian eigenvalue problem. !> !> ZHBTRD factors a Hermitian band matrix A as U S U* , where * means !> conjugate transpose, S is symmetric tridiagonal, and U is unitary. !> ZHBTRD can use either just the lower or just the upper triangle !> of A; ZCHKHB2STG checks both cases. !> !> ZHETRD_HB2ST factors a Hermitian band matrix A as U S U* , !> where * means conjugate transpose, S is symmetric tridiagonal, and U is !> unitary. ZHETRD_HB2ST can use either just the lower or just !> the upper triangle of A; ZCHKHB2STG checks both cases. !> !> DSTEQR factors S as Z D1 Z'. !> D1 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSBTRD (used as reference for DSYTRD_SB2ST) !> D2 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSYTRD_SB2ST . !> D3 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSYTRD_SB2ST . !> !> When ZCHKHB2STG is called, a number of matrix (), a number !> of bandwidths (), and a number of matrix are !> specified. For each size (), each bandwidth () less than or !> equal to , and each type of matrix, one matrix will be generated !> and used to test the hermitian banded reduction routine. For each !> matrix, a number of tests will be performed: !> !> (1) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with !> UPLO='U' !> !> (2) | I - UU* | / ( n ulp ) !> !> (3) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with !> UPLO='L' !> !> (4) | I - UU* | / ( n ulp ) !> !> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by !> DSBTRD with UPLO='U' and !> D2 is computed by !> ZHETRD_HB2ST with UPLO='U' !> !> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by !> DSBTRD with UPLO='U' and !> D3 is computed by !> ZHETRD_HB2ST with UPLO='L' !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKHB2STG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> ZCHKHB2STG does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKHB2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKHB2STG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension !> (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | SD | !> SD is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the diagonal of the tridiagonal matrix computed !> by ZHBTRD. !> |
| [out] | SE | !> SE is DOUBLE PRECISION array, dimension (max(NN)) !> Used to hold the off-diagonal of the tridiagonal matrix !> computed by ZHBTRD. !> |
| [out] | D1 | !> D1 is DOUBLE PRECISION array, dimension (max(NN)) !> |
| [out] | D2 | !> D2 is DOUBLE PRECISION array, dimension (max(NN)) !>*> |
| [out] | D3 | !> D3 is DOUBLE PRECISION array, dimension (max(NN)) !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU, max(NN)) !> Used to hold the unitary matrix computed by ZHBTRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 334 of file zchkhb2stg.f.
| subroutine zchkhs | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( lda, * ) | t1, | ||
| complex*16, dimension( lda, * ) | t2, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( ldu, * ) | uz, | ||
| complex*16, dimension( * ) | w1, | ||
| complex*16, dimension( * ) | w3, | ||
| complex*16, dimension( ldu, * ) | evectl, | ||
| complex*16, dimension( ldu, * ) | evectr, | ||
| complex*16, dimension( ldu, * ) | evecty, | ||
| complex*16, dimension( ldu, * ) | evectx, | ||
| complex*16, dimension( ldu, * ) | uu, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| logical, dimension( * ) | select, | ||
| double precision, dimension( 14 ) | result, | ||
| integer | info ) |
ZCHKHS
!> !> ZCHKHS checks the nonsymmetric eigenvalue problem routines. !> !> ZGEHRD factors A as U H U' , where ' means conjugate !> transpose, H is hessenberg, and U is unitary. !> !> ZUNGHR generates the unitary matrix U. !> !> ZUNMHR multiplies a matrix by the unitary matrix U. !> !> ZHSEQR factors H as Z T Z' , where Z is unitary and T !> is upper triangular. It also computes the eigenvalues, !> w(1), ..., w(n); we define a diagonal matrix W whose !> (diagonal) entries are the eigenvalues. !> !> ZTREVC computes the left eigenvector matrix L and the !> right eigenvector matrix R for the matrix T. The !> columns of L are the complex conjugates of the left !> eigenvectors of T. The columns of R are the right !> eigenvectors of T. L is lower triangular, and R is !> upper triangular. !> !> ZHSEIN computes the left eigenvector matrix Y and the !> right eigenvector matrix X for the matrix H. The !> columns of Y are the complex conjugates of the left !> eigenvectors of H. The columns of X are the right !> eigenvectors of H. Y is lower triangular, and X is !> upper triangular. !> !> When ZCHKHS is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 14 !> tests will be performed: !> !> (1) | A - U H U**H | / ( |A| n ulp ) !> !> (2) | I - UU**H | / ( n ulp ) !> !> (3) | H - Z T Z**H | / ( |H| n ulp ) !> !> (4) | I - ZZ**H | / ( n ulp ) !> !> (5) | A - UZ H (UZ)**H | / ( |A| n ulp ) !> !> (6) | I - UZ (UZ)**H | / ( n ulp ) !> !> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) !> !> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) !> !> (9) | TR - RW | / ( |T| |R| ulp ) !> !> (10) | L**H T - W**H L | / ( |T| |L| ulp ) !> !> (11) | HX - XW | / ( |H| |X| ulp ) !> !> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) !> !> (13) | AX - XW | / ( |A| |X| ulp ) !> !> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by SQRT( overflow threshold ) !> (8) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> (20) Same as (19), but multiplied by SQRT( overflow threshold ) !> (21) Same as (19), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES - INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKHS does nothing. It must be at least zero. !> Not modified. !> !> NN - INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES - INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKHS !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE - LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED - INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKHS to continue the same random number !> sequence. !> Modified. !> !> THRESH - DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT - INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A - COMPLEX*16 array, dimension (LDA,max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA - INTEGER !> The leading dimension of A, H, T1 and T2. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> H - COMPLEX*16 array, dimension (LDA,max(NN)) !> The upper hessenberg matrix computed by ZGEHRD. On exit, !> H contains the Hessenberg form of the matrix in A. !> Modified. !> !> T1 - COMPLEX*16 array, dimension (LDA,max(NN)) !> The Schur (=) matrix computed by ZHSEQR !> if Z is computed. On exit, T1 contains the Schur form of !> the matrix in A. !> Modified. !> !> T2 - COMPLEX*16 array, dimension (LDA,max(NN)) !> The Schur matrix computed by ZHSEQR when Z is not computed. !> This should be identical to T1. !> Modified. !> !> LDU - INTEGER !> The leading dimension of U, Z, UZ and UU. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> U - COMPLEX*16 array, dimension (LDU,max(NN)) !> The unitary matrix computed by ZGEHRD. !> Modified. !> !> Z - COMPLEX*16 array, dimension (LDU,max(NN)) !> The unitary matrix computed by ZHSEQR. !> Modified. !> !> UZ - COMPLEX*16 array, dimension (LDU,max(NN)) !> The product of U times Z. !> Modified. !> !> W1 - COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A, as computed by a full Schur !> decomposition H = Z T Z'. On exit, W1 contains the !> eigenvalues of the matrix in A. !> Modified. !> !> W3 - COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A, as computed by a partial Schur !> decomposition (Z not computed, T only computed as much !> as is necessary for determining eigenvalues). On exit, !> W3 contains the eigenvalues of the matrix in A, possibly !> perturbed by ZHSEIN. !> Modified. !> !> EVECTL - COMPLEX*16 array, dimension (LDU,max(NN)) !> The conjugate transpose of the (upper triangular) left !> eigenvector matrix for the matrix in T1. !> Modified. !> !> EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN)) !> The (upper triangular) right eigenvector matrix for the !> matrix in T1. !> Modified. !> !> EVECTY - COMPLEX*16 array, dimension (LDU,max(NN)) !> The conjugate transpose of the left eigenvector matrix !> for the matrix in H. !> Modified. !> !> EVECTX - COMPLEX*16 array, dimension (LDU,max(NN)) !> The right eigenvector matrix for the matrix in H. !> Modified. !> !> UU - COMPLEX*16 array, dimension (LDU,max(NN)) !> Details of the unitary matrix computed by ZGEHRD. !> Modified. !> !> TAU - COMPLEX*16 array, dimension (max(NN)) !> Further details of the unitary matrix computed by ZGEHRD. !> Modified. !> !> WORK - COMPLEX*16 array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK - INTEGER !> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. !> !> RWORK - DOUBLE PRECISION array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not SELECT. !> Modified. !> !> IWORK - INTEGER array, dimension (max(NN)) !> Workspace. !> Modified. !> !> SELECT - LOGICAL array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not RWORK. !> Modified. !> !> RESULT - DOUBLE PRECISION array, dimension (14) !> The values computed by the fourteen tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO - INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -14: LDU < 1 or LDU < NMAX. !> -26: NWORK too small. !> If ZLATMR, CLATMS, or CLATME returns an error code, the !> absolute value of it is returned. !> If 1, then ZHSEQR could not find all the shifts. !> If 2, then the EISPACK code (for small blocks) failed. !> If >2, then 30*N iterations were not enough to find an !> eigenvalue or to decompose the problem. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> MTEST The number of tests defined: care must be taken !> that (1) the size of RESULT, (2) the number of !> tests actually performed, and (3) MTEST agree. !> NTEST The number of tests performed on this matrix !> so far. This should be less than MTEST, and !> equal to it by the last test. It will be less !> if any of the routines being tested indicates !> that it could not compute the matrices that !> would be tested. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL, !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selects whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !>
Definition at line 407 of file zchkhs.f.
| subroutine zchkst | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| double precision, dimension( * ) | d1, | ||
| double precision, dimension( * ) | d2, | ||
| double precision, dimension( * ) | d3, | ||
| double precision, dimension( * ) | d4, | ||
| double precision, dimension( * ) | d5, | ||
| double precision, dimension( * ) | wa1, | ||
| double precision, dimension( * ) | wa2, | ||
| double precision, dimension( * ) | wa3, | ||
| double precision, dimension( * ) | wr, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | v, | ||
| complex*16, dimension( * ) | vp, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZCHKST
!>
!> ZCHKST checks the Hermitian eigenvalue problem routines.
!>
!> ZHETRD factors A as U S U* , where * means conjugate transpose,
!> S is real symmetric tridiagonal, and U is unitary.
!> ZHETRD can use either just the lower or just the upper triangle
!> of A; ZCHKST checks both cases.
!> U is represented as a product of Householder
!> transformations, whose vectors are stored in the first
!> n-1 columns of V, and whose scale factors are in TAU.
!>
!> ZHPTRD does the same as ZHETRD, except that A and V are stored
!> in format.
!>
!> ZUNGTR constructs the matrix U from the contents of V and TAU.
!>
!> ZUPGTR constructs the matrix U from the contents of VP and TAU.
!>
!> ZSTEQR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal. D2 is the matrix of
!> eigenvalues computed when Z is not computed.
!>
!> DSTERF computes D3, the matrix of eigenvalues, by the
!> PWK method, which does not yield eigenvectors.
!>
!> ZPTEQR factors S as Z4 D4 Z4* , for a
!> Hermitian positive definite tridiagonal matrix.
!> D5 is the matrix of eigenvalues computed when Z is not
!> computed.
!>
!> DSTEBZ computes selected eigenvalues. WA1, WA2, and
!> WA3 will denote eigenvalues computed to high
!> absolute accuracy, with different range options.
!> WR will denote eigenvalues computed to high relative
!> accuracy.
!>
!> ZSTEIN computes Y, the eigenvectors of S, given the
!> eigenvalues.
!>
!> ZSTEDC factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). It may also
!> update an input unitary matrix, usually the output
!> from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may
!> also just compute eigenvalues ('N' option).
!>
!> ZSTEMR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). ZSTEMR
!> uses the Relatively Robust Representation whenever possible.
!>
!> When ZCHKST is called, a number of matrix () and a
!> number of matrix are specified. For each size ()
!> and each type of matrix, one matrix will be generated and used
!> to test the Hermitian eigenroutines. For each matrix, a number
!> of tests will be performed:
!>
!> (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... )
!>
!> (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... )
!>
!> (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... )
!>
!> (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... )
!>
!> (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR.
!>
!> (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...)
!>
!> (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...)
!>
!> (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...)
!>
!> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
!>
!> (13) 0 if the true eigenvalues (computed by sturm count)
!> of S are within THRESH of
!> those in D1. 2*THRESH if they are not. (Tested using
!> DSTECH)
!>
!> For S positive definite,
!>
!> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...)
!>
!> (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...)
!>
!> (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...)
!>
!> When S is also diagonally dominant by the factor gamma < 1,
!>
!> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> DSTEBZ( 'A', 'E', ...)
!>
!> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
!>
!> (19) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> DSTEBZ( 'I', 'E', ...)
!>
!> (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN
!>
!> (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN
!>
!> (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I')
!>
!> (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I')
!>
!> (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V')
!>
!> (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V')
!>
!> (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and
!> ZSTEDC('N')
!>
!> Test 27 is disabled at the moment because ZSTEMR does not
!> guarantee high relatvie accuracy.
!>
!> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> ZSTEMR('V', 'A')
!>
!> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> ZSTEMR('V', 'I')
!>
!> Tests 29 through 34 are disable at present because ZSTEMR
!> does not handle partial spectrum requests.
!>
!> (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I')
!>
!> (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I')
!>
!> (31) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'I') vs. CSTEMR('V', 'I')
!>
!> (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V')
!>
!> (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V')
!>
!> (34) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'V') vs. CSTEMR('V', 'V')
!>
!> (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A')
!>
!> (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A')
!>
!> (37) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'A') vs. CSTEMR('V', 'A')
!>
!> The are specified by an array NN(1:NSIZES); the value of
!> each element NN(j) specifies one size.
!> The are specified by a logical array DOTYPE( 1:NTYPES );
!> if DOTYPE(j) is .TRUE., then matrix type will be generated.
!> Currently, the list of possible types is:
!>
!> (1) The zero matrix.
!> (2) The identity matrix.
!>
!> (3) A diagonal matrix with evenly spaced entries
!> 1, ..., ULP and random signs.
!> (ULP = (first number larger than 1) - 1 )
!> (4) A diagonal matrix with geometrically spaced entries
!> 1, ..., ULP and random signs.
!> (5) A diagonal matrix with entries 1, ULP, ..., ULP
!> and random signs.
!>
!> (6) Same as (4), but multiplied by SQRT( overflow threshold )
!> (7) Same as (4), but multiplied by SQRT( underflow threshold )
!>
!> (8) A matrix of the form U* D U, where U is unitary and
!> D has evenly spaced entries 1, ..., ULP with random signs
!> on the diagonal.
!>
!> (9) A matrix of the form U* D U, where U is unitary and
!> D has geometrically spaced entries 1, ..., ULP with random
!> signs on the diagonal.
!>
!> (10) A matrix of the form U* D U, where U is unitary and
!> D has entries 1, ULP,..., ULP with random
!> signs on the diagonal.
!>
!> (11) Same as (8), but multiplied by SQRT( overflow threshold )
!> (12) Same as (8), but multiplied by SQRT( underflow threshold )
!>
!> (13) Hermitian matrix with random entries chosen from (-1,1).
!> (14) Same as (13), but multiplied by SQRT( overflow threshold )
!> (15) Same as (13), but multiplied by SQRT( underflow threshold )
!> (16) Same as (8), but diagonal elements are all positive.
!> (17) Same as (9), but diagonal elements are all positive.
!> (18) Same as (10), but diagonal elements are all positive.
!> (19) Same as (16), but multiplied by SQRT( overflow threshold )
!> (20) Same as (16), but multiplied by SQRT( underflow threshold )
!> (21) A diagonally dominant tridiagonal matrix with geometrically
!> spaced diagonal entries 1, ..., ULP.
!> | [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKST does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKST !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKST to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array of !> dimension ( LDA , max(NN) ) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> |
| [out] | AP | !> AP is COMPLEX*16 array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix A stored in packed format. !> |
| [out] | SD | !> SD is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The diagonal of the tridiagonal matrix computed by ZHETRD. !> On exit, SD and SE contain the tridiagonal form of the !> matrix in A. !> |
| [out] | SE | !> SE is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The off-diagonal of the tridiagonal matrix computed by !> ZHETRD. On exit, SD and SE contain the tridiagonal form of !> the matrix in A. !> |
| [out] | D1 | !> D1 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> |
| [out] | D2 | !> D2 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> |
| [out] | D3 | !> D3 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by DSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> |
| [out] | D4 | !> D4 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZPTEQR(V). !> ZPTEQR factors S as Z4 D4 Z4* !> On exit, the eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | D5 | !> D5 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZPTEQR(N) !> when Z is not computed. On exit, the !> eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | WA1 | !> WA1 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> |
| [out] | WA2 | !> WA2 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> Choose random values for IL and IU, and ask for the !> IL-th through IU-th eigenvalues. !> |
| [out] | WA3 | !> WA3 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> Determine the values VL and VU of the IL-th and IU-th !> eigenvalues and ask for all eigenvalues in this range. !> |
| [out] | WR | !> WR is DOUBLE PRECISION array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different options. !> as computed by DSTEBZ. !> |
| [out] | U | !> U is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The unitary matrix computed by ZHETRD + ZUNGTR. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, Z, and V. It must be at least 1 !> and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The Housholder vectors computed by ZHETRD in reducing A to !> tridiagonal form. The vectors computed with UPLO='U' are !> in the upper triangle, and the vectors computed with UPLO='L' !> are in the lower triangle. (As described in ZHETRD, the !> sub- and superdiagonal are not set to 1, although the !> true Householder vector has a 1 in that position. The !> routines that use V, such as ZUNGTR, set those entries to !> 1 before using them, and then restore them later.) !> |
| [out] | VP | !> VP is COMPLEX*16 array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix V stored in packed format. !> |
| [out] | TAU | !> TAU is COMPLEX*16 array of !> dimension( max(NN) ) !> The Householder factors computed by ZHETRD in reducing A !> to tridiagonal form. !> |
| [out] | Z | !> Z is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The unitary matrix of eigenvectors computed by ZSTEQR, !> ZPTEQR, and ZSTEIN. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array of !> dimension( LWORK ) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | IWORK | !> IWORK is INTEGER array, !> Workspace. !> |
| [out] | LIWORK | !> LIWORK is INTEGER !> The number of entries in IWORK. This must be at least !> 6 + 6*Nmax + 5 * Nmax * lg Nmax !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The number of entries in LRWORK (dimension( ??? ) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (26) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -23: LDU < 1 or LDU < NMAX. !> -29: LWORK too small. !> If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF, !> or ZUNMC2 returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NBLOCK Blocksize as returned by ENVIR. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 599 of file zchkst.f.
| subroutine zchkst2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| double precision, dimension( * ) | d1, | ||
| double precision, dimension( * ) | d2, | ||
| double precision, dimension( * ) | d3, | ||
| double precision, dimension( * ) | d4, | ||
| double precision, dimension( * ) | d5, | ||
| double precision, dimension( * ) | wa1, | ||
| double precision, dimension( * ) | wa2, | ||
| double precision, dimension( * ) | wa3, | ||
| double precision, dimension( * ) | wr, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | v, | ||
| complex*16, dimension( * ) | vp, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZCHKST2STG
!>
!> ZCHKST2STG checks the Hermitian eigenvalue problem routines
!> using the 2-stage reduction techniques. Since the generation
!> of Q or the vectors is not available in this release, we only
!> compare the eigenvalue resulting when using the 2-stage to the
!> one considered as reference using the standard 1-stage reduction
!> ZHETRD. For that, we call the standard ZHETRD and compute D1 using
!> DSTEQR, then we call the 2-stage ZHETRD_2STAGE with Upper and Lower
!> and we compute D2 and D3 using DSTEQR and then we replaced tests
!> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
!> the 1-stage results are OK and can be trusted.
!> This testing routine will converge to the ZCHKST in the next
!> release when vectors and generation of Q will be implemented.
!>
!> ZHETRD factors A as U S U* , where * means conjugate transpose,
!> S is real symmetric tridiagonal, and U is unitary.
!> ZHETRD can use either just the lower or just the upper triangle
!> of A; ZCHKST2STG checks both cases.
!> U is represented as a product of Householder
!> transformations, whose vectors are stored in the first
!> n-1 columns of V, and whose scale factors are in TAU.
!>
!> ZHPTRD does the same as ZHETRD, except that A and V are stored
!> in format.
!>
!> ZUNGTR constructs the matrix U from the contents of V and TAU.
!>
!> ZUPGTR constructs the matrix U from the contents of VP and TAU.
!>
!> ZSTEQR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal. D2 is the matrix of
!> eigenvalues computed when Z is not computed.
!>
!> DSTERF computes D3, the matrix of eigenvalues, by the
!> PWK method, which does not yield eigenvectors.
!>
!> ZPTEQR factors S as Z4 D4 Z4* , for a
!> Hermitian positive definite tridiagonal matrix.
!> D5 is the matrix of eigenvalues computed when Z is not
!> computed.
!>
!> DSTEBZ computes selected eigenvalues. WA1, WA2, and
!> WA3 will denote eigenvalues computed to high
!> absolute accuracy, with different range options.
!> WR will denote eigenvalues computed to high relative
!> accuracy.
!>
!> ZSTEIN computes Y, the eigenvectors of S, given the
!> eigenvalues.
!>
!> ZSTEDC factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). It may also
!> update an input unitary matrix, usually the output
!> from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may
!> also just compute eigenvalues ('N' option).
!>
!> ZSTEMR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). ZSTEMR
!> uses the Relatively Robust Representation whenever possible.
!>
!> When ZCHKST2STG is called, a number of matrix () and a
!> number of matrix are specified. For each size ()
!> and each type of matrix, one matrix will be generated and used
!> to test the Hermitian eigenroutines. For each matrix, a number
!> of tests will be performed:
!>
!> (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... )
!>
!> (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... )
!>
!> (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... )
!> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
!> eigenvalue matrix computed using S and D2 is the
!> eigenvalue matrix computed using S_2stage the output of
!> ZHETRD_2STAGE(, ,....). D1 and D2 are computed
!> via DSTEQR('N',...)
!>
!> (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... )
!> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
!> eigenvalue matrix computed using S and D3 is the
!> eigenvalue matrix computed using S_2stage the output of
!> ZHETRD_2STAGE(, ,....). D1 and D3 are computed
!> via DSTEQR('N',...)
!>
!> (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR.
!>
!> (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...)
!>
!> (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...)
!>
!> (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...)
!>
!> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
!>
!> (13) 0 if the true eigenvalues (computed by sturm count)
!> of S are within THRESH of
!> those in D1. 2*THRESH if they are not. (Tested using
!> DSTECH)
!>
!> For S positive definite,
!>
!> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...)
!>
!> (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...)
!>
!> (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...)
!>
!> When S is also diagonally dominant by the factor gamma < 1,
!>
!> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> DSTEBZ( 'A', 'E', ...)
!>
!> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
!>
!> (19) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> DSTEBZ( 'I', 'E', ...)
!>
!> (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN
!>
!> (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN
!>
!> (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I')
!>
!> (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I')
!>
!> (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V')
!>
!> (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V')
!>
!> (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and
!> ZSTEDC('N')
!>
!> Test 27 is disabled at the moment because ZSTEMR does not
!> guarantee high relatvie accuracy.
!>
!> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> ZSTEMR('V', 'A')
!>
!> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> ZSTEMR('V', 'I')
!>
!> Tests 29 through 34 are disable at present because ZSTEMR
!> does not handle partial spectrum requests.
!>
!> (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I')
!>
!> (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I')
!>
!> (31) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'I') vs. CSTEMR('V', 'I')
!>
!> (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V')
!>
!> (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V')
!>
!> (34) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'V') vs. CSTEMR('V', 'V')
!>
!> (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A')
!>
!> (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A')
!>
!> (37) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> ZSTEMR('N', 'A') vs. CSTEMR('V', 'A')
!>
!> The are specified by an array NN(1:NSIZES); the value of
!> each element NN(j) specifies one size.
!> The are specified by a logical array DOTYPE( 1:NTYPES );
!> if DOTYPE(j) is .TRUE., then matrix type will be generated.
!> Currently, the list of possible types is:
!>
!> (1) The zero matrix.
!> (2) The identity matrix.
!>
!> (3) A diagonal matrix with evenly spaced entries
!> 1, ..., ULP and random signs.
!> (ULP = (first number larger than 1) - 1 )
!> (4) A diagonal matrix with geometrically spaced entries
!> 1, ..., ULP and random signs.
!> (5) A diagonal matrix with entries 1, ULP, ..., ULP
!> and random signs.
!>
!> (6) Same as (4), but multiplied by SQRT( overflow threshold )
!> (7) Same as (4), but multiplied by SQRT( underflow threshold )
!>
!> (8) A matrix of the form U* D U, where U is unitary and
!> D has evenly spaced entries 1, ..., ULP with random signs
!> on the diagonal.
!>
!> (9) A matrix of the form U* D U, where U is unitary and
!> D has geometrically spaced entries 1, ..., ULP with random
!> signs on the diagonal.
!>
!> (10) A matrix of the form U* D U, where U is unitary and
!> D has entries 1, ULP,..., ULP with random
!> signs on the diagonal.
!>
!> (11) Same as (8), but multiplied by SQRT( overflow threshold )
!> (12) Same as (8), but multiplied by SQRT( underflow threshold )
!>
!> (13) Hermitian matrix with random entries chosen from (-1,1).
!> (14) Same as (13), but multiplied by SQRT( overflow threshold )
!> (15) Same as (13), but multiplied by SQRT( underflow threshold )
!> (16) Same as (8), but diagonal elements are all positive.
!> (17) Same as (9), but diagonal elements are all positive.
!> (18) Same as (10), but diagonal elements are all positive.
!> (19) Same as (16), but multiplied by SQRT( overflow threshold )
!> (20) Same as (16), but multiplied by SQRT( underflow threshold )
!> (21) A diagonally dominant tridiagonal matrix with geometrically
!> spaced diagonal entries 1, ..., ULP.
!> | [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKST2STG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKST2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKST2STG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array of !> dimension ( LDA , max(NN) ) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> |
| [out] | AP | !> AP is COMPLEX*16 array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix A stored in packed format. !> |
| [out] | SD | !> SD is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The diagonal of the tridiagonal matrix computed by ZHETRD. !> On exit, SD and SE contain the tridiagonal form of the !> matrix in A. !> |
| [out] | SE | !> SE is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The off-diagonal of the tridiagonal matrix computed by !> ZHETRD. On exit, SD and SE contain the tridiagonal form of !> the matrix in A. !> |
| [out] | D1 | !> D1 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> |
| [out] | D2 | !> D2 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> |
| [out] | D3 | !> D3 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by DSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> |
| [out] | D4 | !> D4 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZPTEQR(V). !> ZPTEQR factors S as Z4 D4 Z4* !> On exit, the eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | D5 | !> D5 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZPTEQR(N) !> when Z is not computed. On exit, the !> eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | WA1 | !> WA1 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> |
| [out] | WA2 | !> WA2 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> Choose random values for IL and IU, and ask for the !> IL-th through IU-th eigenvalues. !> |
| [out] | WA3 | !> WA3 is DOUBLE PRECISION array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by DSTEBZ. !> Determine the values VL and VU of the IL-th and IU-th !> eigenvalues and ask for all eigenvalues in this range. !> |
| [out] | WR | !> WR is DOUBLE PRECISION array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different options. !> as computed by DSTEBZ. !> |
| [out] | U | !> U is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The unitary matrix computed by ZHETRD + ZUNGTR. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, Z, and V. It must be at least 1 !> and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The Housholder vectors computed by ZHETRD in reducing A to !> tridiagonal form. The vectors computed with UPLO='U' are !> in the upper triangle, and the vectors computed with UPLO='L' !> are in the lower triangle. (As described in ZHETRD, the !> sub- and superdiagonal are not set to 1, although the !> true Householder vector has a 1 in that position. The !> routines that use V, such as ZUNGTR, set those entries to !> 1 before using them, and then restore them later.) !> |
| [out] | VP | !> VP is COMPLEX*16 array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix V stored in packed format. !> |
| [out] | TAU | !> TAU is COMPLEX*16 array of !> dimension( max(NN) ) !> The Householder factors computed by ZHETRD in reducing A !> to tridiagonal form. !> |
| [out] | Z | !> Z is COMPLEX*16 array of !> dimension( LDU, max(NN) ). !> The unitary matrix of eigenvectors computed by ZSTEQR, !> ZPTEQR, and ZSTEIN. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array of !> dimension( LWORK ) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | IWORK | !> IWORK is INTEGER array, !> Workspace. !> |
| [out] | LIWORK | !> LIWORK is INTEGER !> The number of entries in IWORK. This must be at least !> 6 + 6*Nmax + 5 * Nmax * lg Nmax !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The number of entries in LRWORK (dimension( ??? ) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (26) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -23: LDU < 1 or LDU < NMAX. !> -29: LWORK too small. !> If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF, !> or ZUNMC2 returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NBLOCK Blocksize as returned by ENVIR. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 620 of file zchkst2stg.f.
| subroutine zckcsd | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | qval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | mmax, | ||
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( * ) | xf, | ||
| complex*16, dimension( * ) | u1, | ||
| complex*16, dimension( * ) | u2, | ||
| complex*16, dimension( * ) | v1t, | ||
| complex*16, dimension( * ) | v2t, | ||
| double precision, dimension( * ) | theta, | ||
| integer, dimension( * ) | iwork, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
ZCKCSD
!> !> ZCKCSD tests ZUNCSD: !> the CSD for an M-by-M unitary matrix X partitioned as !> [ X11 X12; X21 X22 ]. X11 is P-by-Q. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension P. !> |
| [in] | QVAL | !> QVAL is INTEGER array, dimension (NM) !> The values of the matrix column dimension Q. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | MMAX | !> MMAX is INTEGER !> The maximum value permitted for M, used in dimensioning the !> work arrays. !> |
| [out] | X | !> X is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | XF | !> XF is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | U1 | !> U1 is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | U2 | !> U2 is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | V1T | !> V1T is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | V2T | !> V2T is COMPLEX*16 array, dimension (MMAX*MMAX) !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension (MMAX) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (MMAX) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If ZLAROR returns an error code, the absolute value !> of it is returned. !> |
Definition at line 181 of file zckcsd.f.
| subroutine zckglm | ( | integer | nn, |
| integer, dimension( * ) | nval, | ||
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nmax, | ||
| complex*16, dimension( * ) | a, | ||
| complex*16, dimension( * ) | af, | ||
| complex*16, dimension( * ) | b, | ||
| complex*16, dimension( * ) | bf, | ||
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
ZCKGLM
!> !> ZCKGLM tests ZGGGLM - subroutine for solving generalized linear !> model problem. !>
| [in] | NN | !> NN is INTEGER !> The number of values of N, M and P contained in the vectors !> NVAL, MVAL and PVAL. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix row dimension N. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension P. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESID >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | X | !> X is COMPLEX*16 array, dimension (4*NMAX) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If ZLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 165 of file zckglm.f.
| subroutine zckgqr | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer | np, | ||
| integer, dimension( * ) | pval, | ||
| integer | nn, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nmax, | ||
| complex*16, dimension( * ) | a, | ||
| complex*16, dimension( * ) | af, | ||
| complex*16, dimension( * ) | aq, | ||
| complex*16, dimension( * ) | ar, | ||
| complex*16, dimension( * ) | taua, | ||
| complex*16, dimension( * ) | b, | ||
| complex*16, dimension( * ) | bf, | ||
| complex*16, dimension( * ) | bz, | ||
| complex*16, dimension( * ) | bt, | ||
| complex*16, dimension( * ) | bwk, | ||
| complex*16, dimension( * ) | taub, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
ZCKGQR
!> !> ZCKGQR tests !> ZGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B, !> ZGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row(column) dimension M. !> |
| [in] | NP | !> NP is INTEGER !> The number of values of P contained in the vector PVAL. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NP) !> The values of the matrix row(column) dimension P. !> |
| [in] | NN | !> NN is INTEGER !> The number of values of N contained in the vector NVAL. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column(row) dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AQ | !> AQ is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AR | !> AR is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (NMAX) !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BZ | !> BZ is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BT | !> BT is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BWK | !> BWK is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If ZLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 208 of file zckgqr.f.
| subroutine zckgsv | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nmax, | ||
| complex*16, dimension( * ) | a, | ||
| complex*16, dimension( * ) | af, | ||
| complex*16, dimension( * ) | b, | ||
| complex*16, dimension( * ) | bf, | ||
| complex*16, dimension( * ) | u, | ||
| complex*16, dimension( * ) | v, | ||
| complex*16, dimension( * ) | q, | ||
| double precision, dimension( * ) | alpha, | ||
| double precision, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | r, | ||
| integer, dimension( * ) | iwork, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
ZCKGSV
!> !> ZCKGSV tests ZGGSVD: !> the GSVD for M-by-N matrix A and P-by-N matrix B. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NP) !> The values of the matrix row dimension P. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | V | !> V is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | ALPHA | !> ALPHA is DOUBLE PRECISION array, dimension (NMAX) !> |
| [out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (NMAX) !> |
| [out] | R | !> R is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If ZLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 195 of file zckgsv.f.
| subroutine zcklse | ( | integer | nn, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nmax, | ||
| complex*16, dimension( * ) | a, | ||
| complex*16, dimension( * ) | af, | ||
| complex*16, dimension( * ) | b, | ||
| complex*16, dimension( * ) | bf, | ||
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
ZCKLSE
!> !> ZCKLSE tests ZGGLSE - a subroutine for solving linear equality !> constrained least square problem (LSE). !>
| [in] | NN | !> NN is INTEGER !> The number of values of (M,P,N) contained in the vectors !> (MVAL, PVAL, NVAL). !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NN) !> The values of the matrix row(column) dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NN) !> The values of the matrix row(column) dimension P. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column(row) dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | X | !> X is COMPLEX*16 array, dimension (5*NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If ZLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 165 of file zcklse.f.
| subroutine zcsdts | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| complex*16, dimension( ldx, * ) | xf, | ||
| integer | ldx, | ||
| complex*16, dimension( ldu1, * ) | u1, | ||
| integer | ldu1, | ||
| complex*16, dimension( ldu2, * ) | u2, | ||
| integer | ldu2, | ||
| complex*16, dimension( ldv1t, * ) | v1t, | ||
| integer | ldv1t, | ||
| complex*16, dimension( ldv2t, * ) | v2t, | ||
| integer | ldv2t, | ||
| double precision, dimension( * ) | theta, | ||
| integer, dimension( * ) | iwork, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 15 ) | result ) |
ZCSDTS
!> !> ZCSDTS tests ZUNCSD, which, given an M-by-M partitioned unitary !> matrix X, !> Q M-Q !> X = [ X11 X12 ] P , !> [ X21 X22 ] M-P !> !> computes the CSD !> !> [ U1 ]**T * [ X11 X12 ] * [ V1 ] !> [ U2 ] [ X21 X22 ] [ V2 ] !> !> [ I 0 0 | 0 0 0 ] !> [ 0 C 0 | 0 -S 0 ] !> [ 0 0 0 | 0 0 -I ] !> = [---------------------] = [ D11 D12 ] . !> [ 0 0 0 | I 0 0 ] [ D21 D22 ] !> [ 0 S 0 | 0 C 0 ] !> [ 0 0 I | 0 0 0 ] !> !> and also SORCSD2BY1, which, given !> Q !> [ X11 ] P , !> [ X21 ] M-P !> !> computes the 2-by-1 CSD !> !> [ I 0 0 ] !> [ 0 C 0 ] !> [ 0 0 0 ] !> [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] , !> [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ] !> [ 0 S 0 ] !> [ 0 0 I ] !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix X. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix X11. P >= 0. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns of the matrix X11. Q >= 0. !> |
| [in] | X | !> X is COMPLEX*16 array, dimension (LDX,M) !> The M-by-M matrix X. !> |
| [out] | XF | !> XF is COMPLEX*16 array, dimension (LDX,M) !> Details of the CSD of X, as returned by ZUNCSD; !> see ZUNCSD for further details. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the arrays X and XF. !> LDX >= max( 1,M ). !> |
| [out] | U1 | !> U1 is COMPLEX*16 array, dimension(LDU1,P) !> The P-by-P unitary matrix U1. !> |
| [in] | LDU1 | !> LDU1 is INTEGER !> The leading dimension of the array U1. LDU >= max(1,P). !> |
| [out] | U2 | !> U2 is COMPLEX*16 array, dimension(LDU2,M-P) !> The (M-P)-by-(M-P) unitary matrix U2. !> |
| [in] | LDU2 | !> LDU2 is INTEGER !> The leading dimension of the array U2. LDU >= max(1,M-P). !> |
| [out] | V1T | !> V1T is COMPLEX*16 array, dimension(LDV1T,Q) !> The Q-by-Q unitary matrix V1T. !> |
| [in] | LDV1T | !> LDV1T is INTEGER !> The leading dimension of the array V1T. LDV1T >= !> max(1,Q). !> |
| [out] | V2T | !> V2T is COMPLEX*16 array, dimension(LDV2T,M-Q) !> The (M-Q)-by-(M-Q) unitary matrix V2T. !> |
| [in] | LDV2T | !> LDV2T is INTEGER !> The leading dimension of the array V2T. LDV2T >= !> max(1,M-Q). !> |
| [out] | THETA | !> THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q) !> The CS values of X; the essentially diagonal matrices C and !> S are constructed from THETA; see subroutine ZUNCSD for !> details. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (M) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (15) !> The test ratios: !> First, the 2-by-2 CSD: !> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) !> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) !> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) !> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) !> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) !> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) !> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) !> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) !> RESULT(9) = 0 if THETA is in increasing order and !> all angles are in [0,pi/2] !> = ULPINV otherwise. !> Then, the 2-by-1 CSD: !> RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) !> RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) !> RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) !> RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) !> RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) !> RESULT(15) = 0 if THETA is in increasing order and !> all angles are in [0,pi/2] !> = ULPINV otherwise. !> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). ) !> |
Definition at line 226 of file zcsdts.f.
| subroutine zdrges | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | s, | ||
| complex*16, dimension( lda, * ) | t, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldq, * ) | z, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 13 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRGES
!> !> ZDRGES checks the nonsymmetric generalized eigenvalue (Schur form) !> problem driver ZGGES. !> !> ZGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorder the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms. !> !> When ZDRGES is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each TYPE of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following 13 tests !> will be performed and compared with the threshold THRESH except !> the tests (5), (11) and (13). !> !> !> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues) !> !> !> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues) !> !> !> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues) !> !> !> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues) !> !> (5) if A is in Schur form (i.e. triangular form) (no sorting of !> eigenvalues) !> !> (6) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e., test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (no sorting of eigenvalues) !> !> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp ) !> (with sorting of eigenvalues). !> !> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) if A is in Schur form (i.e. quasi-triangular form) !> (with sorting of eigenvalues). !> !> (11) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e. test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (with sorting of eigenvalues). !> !> (12) if sorting worked and SDIM is the number of eigenvalues !> which were CELECTed. !> !> Test Matrices !> ============= !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> DDRGES does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, DDRGES !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A on input. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to DDRGES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. THRESH >= 0. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by ZGGES. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGES. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> The (left) orthogonal matrix computed by ZGGES. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by ZGGES. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by ZGGES. !> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A !> and B. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*N*N. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension ( 8*N ) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 378 of file zdrges.f.
| subroutine zdrges3 | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | s, | ||
| complex*16, dimension( lda, * ) | t, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldq, * ) | z, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 13 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRGES3
!> !> ZDRGES3 checks the nonsymmetric generalized eigenvalue (Schur form) !> problem driver ZGGES3. !> !> ZGGES3 factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorder the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms. !> !> When ZDRGES3 is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each TYPE of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following 13 tests !> will be performed and compared with the threshold THRESH except !> the tests (5), (11) and (13). !> !> !> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues) !> !> !> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues) !> !> !> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues) !> !> !> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues) !> !> (5) if A is in Schur form (i.e. triangular form) (no sorting of !> eigenvalues) !> !> (6) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e., test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (no sorting of eigenvalues) !> !> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp ) !> (with sorting of eigenvalues). !> !> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) if A is in Schur form (i.e. quasi-triangular form) !> (with sorting of eigenvalues). !> !> (11) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e. test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (with sorting of eigenvalues). !> !> (12) if sorting worked and SDIM is the number of eigenvalues !> which were CELECTed. !> !> Test Matrices !> ============= !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> DDRGES3 does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, DDRGES3 !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A on input. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to DDRGES3 to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. THRESH >= 0. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by ZGGES3. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGES3. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> The (left) orthogonal matrix computed by ZGGES3. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by ZGGES3. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by ZGGES3. !> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A !> and B. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*N*N. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension ( 8*N ) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 378 of file zdrges3.f.
| subroutine zdrgev | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | s, | ||
| complex*16, dimension( lda, * ) | t, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldq, * ) | z, | ||
| complex*16, dimension( ldqe, * ) | qe, | ||
| integer | ldqe, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | alpha1, | ||
| complex*16, dimension( * ) | beta1, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRGEV
!> !> ZDRGEV checks the nonsymmetric generalized eigenvalue problem driver !> routine ZGGEV. !> !> ZGGEV computes for a pair of n-by-n nonsymmetric matrices (A,B) the !> generalized eigenvalues and, optionally, the left and right !> eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w !> or a ratio alpha/beta = w, such that A - w*B is singular. It is !> usually represented as the pair (alpha,beta), as there is reasonable !> interpretation for beta=0, and even for both being zero. !> !> A right generalized eigenvector corresponding to a generalized !> eigenvalue w for a pair of matrices (A,B) is a vector r such that !> (A - wB) * r = 0. A left generalized eigenvector is a vector l such !> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l. !> !> When ZDRGEV is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following tests !> will be performed and compared with the threshold THRESH. !> !> Results from ZGGEV: !> !> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of !> !> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) ) !> !> where VL**H is the conjugate-transpose of VL. !> !> (2) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (3) max over all left eigenvalue/-vector pairs (alpha/beta,r) of !> !> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) ) !> !> (4) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (5) W(full) = W(partial) !> W(full) denotes the eigenvalues computed when both l and r !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and r, or only W and l are !> computed. !> !> (6) VL(full) = VL(partial) !> VL(full) denotes the left eigenvectors computed when both l !> and r are computed, and VL(partial) denotes the result !> when only l is computed. !> !> (7) VR(full) = VR(partial) !> VR(full) denotes the right eigenvectors computed when both l !> and r are also computed, and VR(partial) denotes the result !> when only l is computed. !> !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRGES does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRGEV !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRGES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IERR not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by ZGGEV. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGEV. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> The (left) eigenvectors matrix computed by ZGGEV. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by ZGGEV. !> |
| [out] | QE | !> QE is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> QE holds the computed right or left eigenvectors. !> |
| [in] | LDQE | !> LDQE is INTEGER !> The leading dimension of QE. LDQE >= max(1,max(NN)). !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by ZGGEV. !> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th !> generalized eigenvalue of A and B. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX*16 array, dimension (max(NN)) !> !> Like ALPHAR, ALPHAI, BETA, these arrays contain the !> eigenvalues of A and B, but those computed when ZGGEV only !> computes a partial eigendecomposition, i.e. not the !> eigenvalues and left and right eigenvectors. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. LWORK >= N*(N+1) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (8*N) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 395 of file zdrgev.f.
| subroutine zdrgev3 | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | s, | ||
| complex*16, dimension( lda, * ) | t, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( ldq, * ) | z, | ||
| complex*16, dimension( ldqe, * ) | qe, | ||
| integer | ldqe, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | alpha1, | ||
| complex*16, dimension( * ) | beta1, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRGEV3
!> !> ZDRGEV3 checks the nonsymmetric generalized eigenvalue problem driver !> routine ZGGEV3. !> !> ZGGEV3 computes for a pair of n-by-n nonsymmetric matrices (A,B) the !> generalized eigenvalues and, optionally, the left and right !> eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w !> or a ratio alpha/beta = w, such that A - w*B is singular. It is !> usually represented as the pair (alpha,beta), as there is reasonable !> interpretation for beta=0, and even for both being zero. !> !> A right generalized eigenvector corresponding to a generalized !> eigenvalue w for a pair of matrices (A,B) is a vector r such that !> (A - wB) * r = 0. A left generalized eigenvector is a vector l such !> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l. !> !> When ZDRGEV3 is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following tests !> will be performed and compared with the threshold THRESH. !> !> Results from ZGGEV3: !> !> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of !> !> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) ) !> !> where VL**H is the conjugate-transpose of VL. !> !> (2) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (3) max over all left eigenvalue/-vector pairs (alpha/beta,r) of !> !> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) ) !> !> (4) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (5) W(full) = W(partial) !> W(full) denotes the eigenvalues computed when both l and r !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and r, or only W and l are !> computed. !> !> (6) VL(full) = VL(partial) !> VL(full) denotes the left eigenvectors computed when both l !> and r are computed, and VL(partial) denotes the result !> when only l is computed. !> !> (7) VR(full) = VR(partial) !> VR(full) denotes the right eigenvectors computed when both l !> and r are also computed, and VR(partial) denotes the result !> when only l is computed. !> !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRGEV3 does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRGEV3 !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRGES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IERR not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by ZGGEV3. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGEV3. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> The (left) eigenvectors matrix computed by ZGGEV3. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by ZGGEV3. !> |
| [out] | QE | !> QE is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> QE holds the computed right or left eigenvectors. !> |
| [in] | LDQE | !> LDQE is INTEGER !> The leading dimension of QE. LDQE >= max(1,max(NN)). !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by ZGGEV3. !> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th !> generalized eigenvalue of A and B. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX*16 array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX*16 array, dimension (max(NN)) !> !> Like ALPHAR, ALPHAI, BETA, these arrays contain the !> eigenvalues of A and B, but those computed when ZGGEV3 only !> computes a partial eigendecomposition, i.e. not the !> eigenvalues and left and right eigenvectors. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. LWORK >= N*(N+1) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (8*N) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 395 of file zdrgev3.f.
| subroutine zdrgsx | ( | integer | nsize, |
| integer | ncmax, | ||
| double precision | thresh, | ||
| integer | nin, | ||
| integer | nout, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | ai, | ||
| complex*16, dimension( lda, * ) | bi, | ||
| complex*16, dimension( lda, * ) | z, | ||
| complex*16, dimension( lda, * ) | q, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| double precision, dimension( * ) | s, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRGSX
!> !> ZDRGSX checks the nonsymmetric generalized eigenvalue (Schur form) !> problem expert driver ZGGESX. !> !> ZGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorders the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms; computes a reciprocal condition number for the average !> of the selected eigenvalues; and computes a reciprocal condition !> number for the right and left deflating subspaces corresponding to !> the selected eigenvalues. !> !> When ZDRGSX is called with NSIZE > 0, five (5) types of built-in !> matrix pairs are used to test the routine ZGGESX. !> !> When ZDRGSX is called with NSIZE = 0, it reads in test matrix data !> to test ZGGESX. !> (need more details on what kind of read-in data are needed). !> !> For each matrix pair, the following tests will be performed and !> compared with the threshold THRESH except for the tests (7) and (9): !> !> (1) | A - Q S Z' | / ( |A| n ulp ) !> !> (2) | B - Q T Z' | / ( |B| n ulp ) !> !> (3) | I - QQ' | / ( n ulp ) !> !> (4) | I - ZZ' | / ( n ulp ) !> !> (5) if A is in Schur form (i.e. triangular form) !> !> (6) maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (7) if sorting worked and SDIM is the number of eigenvalues !> which were selected. !> !> (8) the estimated value DIF does not differ from the true values of !> Difu and Difl more than a factor 10*THRESH. If the estimate DIF !> equals zero the corresponding true values of Difu and Difl !> should be less than EPS*norm(A, B). If the true value of Difu !> and Difl equal zero, the estimate DIF should be less than !> EPS*norm(A, B). !> !> (9) If INFO = N+3 is returned by ZGGESX, the reordering !> and we check that DIF = PL = PR = 0 and that the true value of !> Difu and Difl is < EPS*norm(A, B). We count the events when !> INFO=N+3. !> !> For read-in test matrices, the same tests are run except that the !> exact value for DIF (and PL) is input data. Additionally, there is !> one more test run for read-in test matrices: !> !> (10) the estimated value PL does not differ from the true value of !> PLTRU more than a factor THRESH. If the estimate PL equals !> zero the corresponding true value of PLTRU should be less than !> EPS*norm(A, B). If the true value of PLTRU equal zero, the !> estimate PL should be less than EPS*norm(A, B). !> !> Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1) !> matrix pairs are generated and tested. NSIZE should be kept small. !> !> SVD (routine ZGESVD) is used for computing the true value of DIF_u !> and DIF_l when testing the built-in test problems. !> !> Built-in Test Matrices !> ====================== !> !> All built-in test matrices are the 2 by 2 block of triangular !> matrices !> !> A = [ A11 A12 ] and B = [ B11 B12 ] !> [ A22 ] [ B22 ] !> !> where for different type of A11 and A22 are given as the following. !> A12 and B12 are chosen so that the generalized Sylvester equation !> !> A11*R - L*A22 = -A12 !> B11*R - L*B22 = -B12 !> !> have prescribed solution R and L. !> !> Type 1: A11 = J_m(1,-1) and A_22 = J_k(1-a,1). !> B11 = I_m, B22 = I_k !> where J_k(a,b) is the k-by-k Jordan block with ``a'' on !> diagonal and ``b'' on superdiagonal. !> !> Type 2: A11 = (a_ij) = ( 2(.5-sin(i)) ) and !> B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m !> A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and !> B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k !> !> Type 3: A11, A22 and B11, B22 are chosen as for Type 2, but each !> second diagonal block in A_11 and each third diagonal block !> in A_22 are made as 2 by 2 blocks. !> !> Type 4: A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) ) !> for i=1,...,m, j=1,...,m and !> A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) ) !> for i=m+1,...,k, j=m+1,...,k !> !> Type 5: (A,B) and have potentially close or common eigenvalues and !> very large departure from block diagonality A_11 is chosen !> as the m x m leading submatrix of A_1: !> | 1 b | !> | -b 1 | !> | 1+d b | !> | -b 1+d | !> A_1 = | d 1 | !> | -1 d | !> | -d 1 | !> | -1 -d | !> | 1 | !> and A_22 is chosen as the k x k leading submatrix of A_2: !> | -1 b | !> | -b -1 | !> | 1-d b | !> | -b 1-d | !> A_2 = | d 1+b | !> | -1-b d | !> | -d 1+b | !> | -1+b -d | !> | 1-d | !> and matrix B are chosen as identity matrices (see DLATM5). !> !>
| [in] | NSIZE | !> NSIZE is INTEGER !> The maximum size of the matrices to use. NSIZE >= 0. !> If NSIZE = 0, no built-in tests matrices are used, but !> read-in test matrices are used to test DGGESX. !> |
| [in] | NCMAX | !> NCMAX is INTEGER !> Maximum allowable NMAX for generating Kroneker matrix !> in call to ZLAKF2 !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. THRESH >= 0. !> |
| [in] | NIN | !> NIN is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to store the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, AI, BI, Z and Q, !> LDA >= max( 1, NSIZE ). For the read-in test, !> LDA >= max( 1, N ), N is the size of the test matrices. !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to store the matrix whose eigenvalues are to be !> computed. On exit, B contains the last matrix actually used. !> |
| [out] | AI | !> AI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of A, modified by ZGGESX. !> |
| [out] | BI | !> BI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of B, modified by ZGGESX. !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDA, NSIZE) !> Z holds the left Schur vectors computed by ZGGESX. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDA, NSIZE) !> Q holds the right Schur vectors computed by ZGGESX. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (NSIZE) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (NSIZE) !> !> On exit, ALPHA/BETA are the eigenvalues. !> |
| [out] | C | !> C is COMPLEX*16 array, dimension (LDC, LDC) !> Store the matrix generated by subroutine ZLAKF2, this is the !> matrix formed by Kronecker products used for estimating !> DIF. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of C. LDC >= max(1, LDA*LDA/2 ). !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (LDC) !> Singular values of C !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*NSIZE*NSIZE/2 !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, !> dimension (5*NSIZE*NSIZE/2 - 4) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= NSIZE + 2. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (NSIZE) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. !> |
Definition at line 346 of file zdrgsx.f.
| subroutine zdrgvx | ( | integer | nsize, |
| double precision | thresh, | ||
| integer | nin, | ||
| integer | nout, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | b, | ||
| complex*16, dimension( lda, * ) | ai, | ||
| complex*16, dimension( lda, * ) | bi, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( lda, * ) | vl, | ||
| complex*16, dimension( lda, * ) | vr, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| double precision, dimension( * ) | lscale, | ||
| double precision, dimension( * ) | rscale, | ||
| double precision, dimension( * ) | s, | ||
| double precision, dimension( * ) | dtru, | ||
| double precision, dimension( * ) | dif, | ||
| double precision, dimension( * ) | diftru, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( 4 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRGVX
!>
!> ZDRGVX checks the nonsymmetric generalized eigenvalue problem
!> expert driver ZGGEVX.
!>
!> ZGGEVX computes the generalized eigenvalues, (optionally) the left
!> and/or right eigenvectors, (optionally) computes a balancing
!> transformation to improve the conditioning, and (optionally)
!> reciprocal condition numbers for the eigenvalues and eigenvectors.
!>
!> When ZDRGVX is called with NSIZE > 0, two types of test matrix pairs
!> are generated by the subroutine DLATM6 and test the driver ZGGEVX.
!> The test matrices have the known exact condition numbers for
!> eigenvalues. For the condition numbers of the eigenvectors
!> corresponding the first and last eigenvalues are also know
!> ``exactly'' (see ZLATM6).
!> For each matrix pair, the following tests will be performed and
!> compared with the threshold THRESH.
!>
!> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
!>
!> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
!>
!> where l**H is the conjugate tranpose of l.
!>
!> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
!>
!> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
!>
!> (3) The condition number S(i) of eigenvalues computed by ZGGEVX
!> differs less than a factor THRESH from the exact S(i) (see
!> ZLATM6).
!>
!> (4) DIF(i) computed by ZTGSNA differs less than a factor 10*THRESH
!> from the exact value (for the 1st and 5th vectors only).
!>
!> Test Matrices
!> =============
!>
!> Two kinds of test matrix pairs
!> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
!> are used in the tests:
!>
!> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
!> 0 2+a 0 0 0 0 1 0 0 0
!> 0 0 3+a 0 0 0 0 1 0 0
!> 0 0 0 4+a 0 0 0 0 1 0
!> 0 0 0 0 5+a , 0 0 0 0 1 , and
!>
!> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0
!> 1 1 0 0 0 0 1 0 0 0
!> 0 0 1 0 0 0 0 1 0 0
!> 0 0 0 1+a 1+b 0 0 0 1 0
!> 0 0 0 -1-b 1+a , 0 0 0 0 1 .
!>
!> In both cases the same inverse(YH) and inverse(X) are used to compute
!> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
!>
!> YH: = 1 0 -y y -y X = 1 0 -x -x x
!> 0 1 -y y -y 0 1 x -x -x
!> 0 0 1 0 0 0 0 1 0 0
!> 0 0 0 1 0 0 0 0 1 0
!> 0 0 0 0 1, 0 0 0 0 1 , where
!>
!> a, b, x and y will have all values independently of each other from
!> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }.
!> | [in] | NSIZE | !> NSIZE is INTEGER !> The number of sizes of matrices to use. NSIZE must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIN will be !> tested. If it is not zero, then N = 5. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIN | !> NIN is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, AI, BI, Ao, and Bo. !> It must be at least 1 and at least NSIZE. !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, B contains the last matrix actually used. !> |
| [out] | AI | !> AI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of A, modified by ZGGEVX. !> |
| [out] | BI | !> BI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of B, modified by ZGGEVX. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (NSIZE) !> |
| [out] | BETA | !> BETA is COMPLEX*16 array, dimension (NSIZE) !> !> On exit, ALPHA/BETA are the eigenvalues. !> |
| [out] | VL | !> VL is COMPLEX*16 array, dimension (LDA, NSIZE) !> VL holds the left eigenvectors computed by ZGGEVX. !> |
| [out] | VR | !> VR is COMPLEX*16 array, dimension (LDA, NSIZE) !> VR holds the right eigenvectors computed by ZGGEVX. !> |
| [out] | ILO | !> ILO is INTEGER !> |
| [out] | IHI | !> IHI is INTEGER !> |
| [out] | LSCALE | !> LSCALE is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RSCALE | !> RSCALE is DOUBLE PRECISION array, dimension (N) !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (N) !> |
| [out] | DTRU | !> DTRU is DOUBLE PRECISION array, dimension (N) !> |
| [out] | DIF | !> DIF is DOUBLE PRECISION array, dimension (N) !> |
| [out] | DIFTRU | !> DIFTRU is DOUBLE PRECISION array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> Leading dimension of WORK. LWORK >= 2*N*N + 2*N !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (6*N) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> Leading dimension of IWORK. LIWORK >= N+2. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. !> |
Definition at line 293 of file zdrgvx.f.
| subroutine zdrvbd | ( | integer | nsizes, |
| integer, dimension( * ) | mm, | ||
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldvt, * ) | vt, | ||
| integer | ldvt, | ||
| complex*16, dimension( lda, * ) | asav, | ||
| complex*16, dimension( ldu, * ) | usav, | ||
| complex*16, dimension( ldvt, * ) | vtsav, | ||
| double precision, dimension( * ) | s, | ||
| double precision, dimension( * ) | ssav, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | nounit, | ||
| integer | info ) |
ZDRVBD
!> !> ZDRVBD checks the singular value decomposition (SVD) driver ZGESVD, !> ZGESDD, ZGESVJ, ZGEJSV, ZGESVDX, and ZGESVDQ. !> !> ZGESVD and ZGESDD factors A = U diag(S) VT, where U and VT are !> unitary and diag(S) is diagonal with the entries of the array S on !> its diagonal. The entries of S are the singular values, nonnegative !> and stored in decreasing order. U and VT can be optionally not !> computed, overwritten on A, or computed partially. !> !> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN. !> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N. !> !> When ZDRVBD is called, a number of matrix (M's and N's) !> and a number of matrix are specified. For each size (M,N) !> and each type of matrix, and for the minimal workspace as well as !> workspace adequate to permit blocking, an M x N matrix will be !> generated and used to test the SVD routines. For each matrix, A will !> be factored as A = U diag(S) VT and the following 12 tests computed: !> !> Test for ZGESVD: !> !> (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (2) | I - U'U | / ( M ulp ) !> !> (3) | I - VT VT' | / ( N ulp ) !> !> (4) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (5) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for ZGESDD: !> !> (8) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (9) | I - U'U | / ( M ulp ) !> !> (10) | I - VT VT' | / ( N ulp ) !> !> (11) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (12) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (13) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (14) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for ZGESVDQ: !> !> (36) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (37) | I - U'U | / ( M ulp ) !> !> (38) | I - VT VT' | / ( N ulp ) !> !> (39) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for ZGESVJ: !> !> (15) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (16) | I - U'U | / ( M ulp ) !> !> (17) | I - VT VT' | / ( N ulp ) !> !> (18) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for ZGEJSV: !> !> (19) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (20) | I - U'U | / ( M ulp ) !> !> (21) | I - VT VT' | / ( N ulp ) !> !> (22) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for ZGESVDX( 'V', 'V', 'A' )/ZGESVDX( 'N', 'N', 'A' ) !> !> (23) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (24) | I - U'U | / ( M ulp ) !> !> (25) | I - VT VT' | / ( N ulp ) !> !> (26) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (27) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (28) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (29) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for ZGESVDX( 'V', 'V', 'I' ) !> !> (30) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp ) !> !> (31) | I - U'U | / ( M ulp ) !> !> (32) | I - VT VT' | / ( N ulp ) !> !> Test for ZGESVDX( 'V', 'V', 'V' ) !> !> (33) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp ) !> !> (34) | I - U'U | / ( M ulp ) !> !> (35) | I - VT VT' | / ( N ulp ) !> !> The are specified by the arrays MM(1:NSIZES) and !> NN(1:NSIZES); the value of each element pair (MM(j),NN(j)) !> specifies one size. The are specified by a logical array !> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type !> will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A matrix of the form U D V, where U and V are unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> (4) Same as (3), but multiplied by the underflow-threshold / ULP. !> (5) Same as (3), but multiplied by the overflow-threshold * ULP. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVBD does nothing. It must be at least zero. !> |
| [in] | MM | !> MM is INTEGER array, dimension (NSIZES) !> An array containing the matrix to be used. For !> each j=1,...,NSIZES, if MM(j) is zero, then MM(j) and NN(j) !> will be ignored. The MM(j) values must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the matrix to be used. For !> each j=1,...,NSIZES, if NN(j) is zero, then MM(j) and NN(j) !> will be ignored. The NN(j) values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVBD !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrices are in A and B. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix !> of type j will be generated. If NTYPES is smaller than the !> maximum number of types defined (PARAMETER MAXTYP), then !> types NTYPES+1 through MAXTYP will not be generated. If !> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through !> DOTYPE(NTYPES) will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVBD to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA,max(NN)) !> Used to hold the matrix whose singular values are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( MM ). !> |
| [out] | U | !> U is COMPLEX*16 array, dimension (LDU,max(MM)) !> Used to hold the computed matrix of right singular vectors. !> On exit, U contains the last such vectors actually computed. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at !> least 1 and at least max( MM ). !> |
| [out] | VT | !> VT is COMPLEX*16 array, dimension (LDVT,max(NN)) !> Used to hold the computed matrix of left singular vectors. !> On exit, VT contains the last such vectors actually computed. !> |
| [in] | LDVT | !> LDVT is INTEGER !> The leading dimension of VT. It must be at !> least 1 and at least max( NN ). !> |
| [out] | ASAV | !> ASAV is COMPLEX*16 array, dimension (LDA,max(NN)) !> Used to hold a different copy of the matrix whose singular !> values are to be computed. On exit, A contains the last !> matrix actually used. !> |
| [out] | USAV | !> USAV is COMPLEX*16 array, dimension (LDU,max(MM)) !> Used to hold a different copy of the computed matrix of !> right singular vectors. On exit, USAV contains the last such !> vectors actually computed. !> |
| [out] | VTSAV | !> VTSAV is COMPLEX*16 array, dimension (LDVT,max(NN)) !> Used to hold a different copy of the computed matrix of !> left singular vectors. On exit, VTSAV contains the last such !> vectors actually computed. !> |
| [out] | S | !> S is DOUBLE PRECISION array, dimension (max(min(MM,NN))) !> Contains the computed singular values. !> |
| [out] | SSAV | !> SSAV is DOUBLE PRECISION array, dimension (max(min(MM,NN))) !> Contains another copy of the computed singular values. !> |
| [out] | E | !> E is DOUBLE PRECISION array, dimension (max(min(MM,NN))) !> Workspace for ZGESVD. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> MAX(3*MIN(M,N)+MAX(M,N)**2,5*MIN(M,N),3*MAX(M,N)) for all !> pairs (M,N)=(MM(j),NN(j)) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, !> dimension ( 5*max(max(MM,NN)) ) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension at least 8*min(M,N) !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some MM(j) < 0 !> -3: Some NN(j) < 0 !> -4: NTYPES < 0 !> -7: THRESH < 0 !> -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). !> -12: LDU < 1 or LDU < MMAX. !> -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ). !> -21: LWORK too small. !> If ZLATMS, or ZGESVD returns an error code, the !> absolute value of it is returned. !> |
Definition at line 397 of file zdrvbd.f.
| subroutine zdrves | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( lda, * ) | ht, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | wt, | ||
| complex*16, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| double precision, dimension( 13 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRVES
!> !> ZDRVES checks the nonsymmetric eigenvalue (Schur form) problem !> driver ZGEES. !> !> When ZDRVES is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 13 !> tests will be performed: !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is orthogonal and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from (-1,1). !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVES does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVES !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN ). !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by ZGEES. !> |
| [out] | HT | !> HT is COMPLEX*16 array, dimension (LDA, max(NN)) !> Yet another copy of the test matrix A, modified by ZGEES. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (max(NN)) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX*16 array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEES only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | VS | !> VS is COMPLEX*16 array, dimension (LDVS, max(NN)) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1,max(NN)). !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (13) !> The values computed by the 13 tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NWORK) !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> 5*NN(j)+2*NN(j)**2 for all j. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(NN)) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (max(NN)) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). !> -18: NWORK too small. !> If ZLATMR, CLATMS, CLATME or ZGEES returns an error code, !> the absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Select whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 375 of file zdrves.f.
| subroutine zdrvev | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | w1, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex*16, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| double precision, dimension( 7 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
ZDRVEV
!> !> ZDRVEV checks the nonsymmetric eigenvalue problem driver ZGEEV. !> !> When ZDRVEV is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 7 !> tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate-transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when both VR and VL !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and VR, or only W and VL are !> computed. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when both VR !> and VL are computed, and VR(partial) denotes the result !> when only VR is computed. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when both VR !> and VL are also computed, and VL(partial) denotes the result !> when only VL is computed. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVEV does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVEV !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVEV to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max(NN). !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by ZGEEV. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A. On exit, W are the eigenvalues of !> the matrix in A. !> |
| [out] | W1 | !> W1 is COMPLEX*16 array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEEV only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL, max(NN)) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,max(NN)). !> |
| [out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR, max(NN)) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,max(NN)). !> |
| [out] | LRE | !> LRE is COMPLEX*16 array, dimension (LDLRE, max(NN)) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,max(NN)). !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (7) !> The values computed by the seven tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NWORK) !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> 5*NN(j)+2*NN(j)**2 for all j. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*max(NN)) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). !> -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). !> -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). !> -21: NWORK too small. !> If ZLATMR, CLATMS, CLATME or ZGEEV returns an error code, !> the absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 387 of file zdrvev.f.
| subroutine zdrvsg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision, dimension( * ) | d, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( lda, * ) | ab, | ||
| complex*16, dimension( ldb, * ) | bb, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | bp, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRVSG
!> !> ZDRVSG checks the complex Hermitian generalized eigenproblem !> drivers. !> !> ZHEGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHEGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> ZHEGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHPGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHPGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> ZHPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHBGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> ZHBGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> ZHBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> When ZDRVSG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) ZHEGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> (2) as (1) but calling ZHPGV !> (3) as (1) but calling ZHBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling ZHPGV !> (6) as (4) but calling ZHBGV !> !> (7) ZHEGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling ZHPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling ZHPGV !> !> (11) ZHEGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling ZHPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling ZHPGV !> !> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests. !> !> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVSG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVSG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVSG to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B COMPLEX*16 array, dimension (LDB , max(NN)) !> Used to hold the Hermitian positive definite matrix for !> the generailzed problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z COMPLEX*16 array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of ZZ. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB COMPLEX*16 array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB COMPLEX*16 array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK COMPLEX*16 array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 2*N + N**2 where N = max( NN(j), 2 ). !> Not modified. !> !> RWORK DOUBLE PRECISION array, dimension (LRWORK) !> Workspace. !> Modified. !> !> LRWORK INTEGER !> The number of entries in RWORK. This must be at least !> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where !> N = max( NN(j) ) and lg( N ) = smallest integer k such !> that 2**k >= N . !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK)) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in IWORK. This must be at least !> 2 + 5*max( NN(j) ). !> Not modified. !> !> RESULT DOUBLE PRECISION array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LRWORK too small. !> -25: LIWORK too small. !> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, !> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 366 of file zdrvsg.f.
| subroutine zdrvsg2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | d2, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( lda, * ) | ab, | ||
| complex*16, dimension( ldb, * ) | bb, | ||
| complex*16, dimension( * ) | ap, | ||
| complex*16, dimension( * ) | bp, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRVSG2STG
!> !> ZDRVSG2STG checks the complex Hermitian generalized eigenproblem !> drivers. !> !> ZHEGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHEGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> ZHEGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHPGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHPGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> ZHPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHBGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> ZHBGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> ZHBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> When ZDRVSG2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) ZHEGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> | D - D2 | / ( |D| ulp ) where D is computed by !> ZHEGV and D2 is computed by !> ZHEGV_2STAGE. This test is !> only performed for DSYGV !> !> (2) as (1) but calling ZHPGV !> (3) as (1) but calling ZHBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling ZHPGV !> (6) as (4) but calling ZHBGV !> !> (7) ZHEGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling ZHPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling ZHPGV !> !> (11) ZHEGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling ZHPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling ZHPGV !> !> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests. !> !> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVSG2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVSG2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVSG2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B COMPLEX*16 array, dimension (LDB , max(NN)) !> Used to hold the Hermitian positive definite matrix for !> the generailzed problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z COMPLEX*16 array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of ZZ. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB COMPLEX*16 array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB COMPLEX*16 array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK COMPLEX*16 array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 2*N + N**2 where N = max( NN(j), 2 ). !> Not modified. !> !> RWORK DOUBLE PRECISION array, dimension (LRWORK) !> Workspace. !> Modified. !> !> LRWORK INTEGER !> The number of entries in RWORK. This must be at least !> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where !> N = max( NN(j) ) and lg( N ) = smallest integer k such !> that 2**k >= N . !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK)) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in IWORK. This must be at least !> 2 + 5*max( NN(j) ). !> Not modified. !> !> RESULT DOUBLE PRECISION array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LRWORK too small. !> -25: LIWORK too small. !> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, !> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 372 of file zdrvsg2stg.f.
| subroutine zdrvst | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | d1, | ||
| double precision, dimension( * ) | d2, | ||
| double precision, dimension( * ) | d3, | ||
| double precision, dimension( * ) | wa1, | ||
| double precision, dimension( * ) | wa2, | ||
| double precision, dimension( * ) | wa3, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | v, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRVST
!> !> ZDRVST checks the Hermitian eigenvalue problem drivers. !> !> ZHEEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix, !> using a divide-and-conquer algorithm. !> !> ZHEEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> ZHEEVR computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix !> using the Relatively Robust Representation where it can. !> !> ZHPEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage, using a divide-and-conquer algorithm. !> !> ZHPEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> ZHBEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix, !> using a divide-and-conquer algorithm. !> !> ZHBEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> ZHEEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> ZHPEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> ZHBEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> When ZDRVST is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the appropriate drivers. For each matrix and each !> driver routine called, the following tests will be performed: !> !> (1) | A - Z D Z' | / ( |A| n ulp ) !> !> (2) | I - Z Z' | / ( n ulp ) !> !> (3) | D1 - D2 | / ( |D1| ulp ) !> !> where Z is the matrix of eigenvectors returned when the !> eigenvector option is given and D1 and D2 are the eigenvalues !> returned with and without the eigenvector option. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> (16) A band matrix with half bandwidth randomly chosen between !> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP !> with random signs. !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVST does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVST !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVST to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D1 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by ZSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> Modified. !> !> D2 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by ZSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> Modified. !> !> D3 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by DSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> Modified. !> !> WA1 DOUBLE PRECISION array, dimension !> !> WA2 DOUBLE PRECISION array, dimension !> !> WA3 DOUBLE PRECISION array, dimension !> !> U COMPLEX*16 array, dimension (LDU, max(NN)) !> The unitary matrix computed by ZHETRD + ZUNGC3. !> Modified. !> !> LDU INTEGER !> The leading dimension of U, Z, and V. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> V COMPLEX*16 array, dimension (LDU, max(NN)) !> The Housholder vectors computed by ZHETRD in reducing A to !> tridiagonal form. !> Modified. !> !> TAU COMPLEX*16 array, dimension (max(NN)) !> The Householder factors computed by ZHETRD in reducing A !> to tridiagonal form. !> Modified. !> !> Z COMPLEX*16 array, dimension (LDU, max(NN)) !> The unitary matrix of eigenvectors computed by ZHEEVD, !> ZHEEVX, ZHPEVD, CHPEVX, ZHBEVD, and CHBEVX. !> Modified. !> !> WORK - COMPLEX*16 array of dimension ( LWORK ) !> Workspace. !> Modified. !> !> LWORK - INTEGER !> The number of entries in WORK. This must be at least !> 2*max( NN(j), 2 )**2. !> Not modified. !> !> RWORK DOUBLE PRECISION array, dimension (3*max(NN)) !> Workspace. !> Modified. !> !> LRWORK - INTEGER !> The number of entries in RWORK. !> !> IWORK INTEGER array, dimension (6*max(NN)) !> Workspace. !> Modified. !> !> LIWORK - INTEGER !> The number of entries in IWORK. !> !> RESULT DOUBLE PRECISION array, dimension (??) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDU < 1 or LDU < NMAX. !> -21: LWORK too small. !> If DLATMR, SLATMS, ZHETRD, DORGC3, ZSTEQR, DSTERF, !> or DORMC2 returns an error code, the !> absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 334 of file zdrvst.f.
| subroutine zdrvst2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | d1, | ||
| double precision, dimension( * ) | d2, | ||
| double precision, dimension( * ) | d3, | ||
| double precision, dimension( * ) | wa1, | ||
| double precision, dimension( * ) | wa2, | ||
| double precision, dimension( * ) | wa3, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldu, * ) | v, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( ldu, * ) | z, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| double precision, dimension( * ) | result, | ||
| integer | info ) |
ZDRVST2STG
!> !> ZDRVST2STG checks the Hermitian eigenvalue problem drivers. !> !> ZHEEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix, !> using a divide-and-conquer algorithm. !> !> ZHEEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> ZHEEVR computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix !> using the Relatively Robust Representation where it can. !> !> ZHPEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage, using a divide-and-conquer algorithm. !> !> ZHPEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> ZHBEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix, !> using a divide-and-conquer algorithm. !> !> ZHBEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> ZHEEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> ZHPEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> ZHBEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> When ZDRVST2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the appropriate drivers. For each matrix and each !> driver routine called, the following tests will be performed: !> !> (1) | A - Z D Z' | / ( |A| n ulp ) !> !> (2) | I - Z Z' | / ( n ulp ) !> !> (3) | D1 - D2 | / ( |D1| ulp ) !> !> where Z is the matrix of eigenvectors returned when the !> eigenvector option is given and D1 and D2 are the eigenvalues !> returned with and without the eigenvector option. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> (16) A band matrix with half bandwidth randomly chosen between !> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP !> with random signs. !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVST2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVST2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVST2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D1 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by ZSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> Modified. !> !> D2 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by ZSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> Modified. !> !> D3 DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A, as computed by DSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> Modified. !> !> WA1 DOUBLE PRECISION array, dimension !> !> WA2 DOUBLE PRECISION array, dimension !> !> WA3 DOUBLE PRECISION array, dimension !> !> U COMPLEX*16 array, dimension (LDU, max(NN)) !> The unitary matrix computed by ZHETRD + ZUNGC3. !> Modified. !> !> LDU INTEGER !> The leading dimension of U, Z, and V. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> V COMPLEX*16 array, dimension (LDU, max(NN)) !> The Housholder vectors computed by ZHETRD in reducing A to !> tridiagonal form. !> Modified. !> !> TAU COMPLEX*16 array, dimension (max(NN)) !> The Householder factors computed by ZHETRD in reducing A !> to tridiagonal form. !> Modified. !> !> Z COMPLEX*16 array, dimension (LDU, max(NN)) !> The unitary matrix of eigenvectors computed by ZHEEVD, !> ZHEEVX, ZHPEVD, CHPEVX, ZHBEVD, and CHBEVX. !> Modified. !> !> WORK - COMPLEX*16 array of dimension ( LWORK ) !> Workspace. !> Modified. !> !> LWORK - INTEGER !> The number of entries in WORK. This must be at least !> 2*max( NN(j), 2 )**2. !> Not modified. !> !> RWORK DOUBLE PRECISION array, dimension (3*max(NN)) !> Workspace. !> Modified. !> !> LRWORK - INTEGER !> The number of entries in RWORK. !> !> IWORK INTEGER array, dimension (6*max(NN)) !> Workspace. !> Modified. !> !> LIWORK - INTEGER !> The number of entries in IWORK. !> !> RESULT DOUBLE PRECISION array, dimension (??) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDU < 1 or LDU < NMAX. !> -21: LWORK too small. !> If DLATMR, SLATMS, ZHETRD, DORGC3, ZSTEQR, DSTERF, !> or DORMC2 returns an error code, the !> absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 334 of file zdrvst2stg.f.
| subroutine zdrvsx | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | niunit, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( lda, * ) | ht, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | wt, | ||
| complex*16, dimension( * ) | wtmp, | ||
| complex*16, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| complex*16, dimension( ldvs, * ) | vs1, | ||
| double precision, dimension( 17 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZDRVSX
!> !> ZDRVSX checks the nonsymmetric eigenvalue (Schur form) problem !> expert driver ZGEESX. !> !> ZDRVSX uses both test matrices generated randomly depending on !> data supplied in the calling sequence, as well as on data !> read from an input file and including precomputed condition !> numbers to which it compares the ones it computes. !> !> When ZDRVSX is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 15 !> tests will be performed: !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> If workspace sufficient, also compare W with and !> without reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare T with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare VS with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> If workspace sufficient, also compare SDIM with and !> without reciprocal condition numbers !> !> (14) if RCONDE the same no matter if VS and/or RCONDV computed !> !> (15) if RCONDV the same no matter if VS and/or RCONDE computed !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is orthogonal and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from (-1,1). !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> !> In addition, an input file will be read from logical unit number !> NIUNIT. The file contains matrices along with precomputed !> eigenvalues and reciprocal condition numbers for the eigenvalue !> average and right invariant subspace. For these matrices, in !> addition to tests (1) to (15) we will compute the following two !> tests: !> !> (16) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal average eigenvalue condition number !> computed by ZGEESX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !> !> (17) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right invariant subspace condition !> number computed by ZGEESX and RCDVIN (the precomputed true !> value) is supplied as input. cond(RCONDV) is the condition !> number of RCONDV, and takes errors in computing RCONDV into !> account, so that the resulting quantity should be O(ULP). !> cond(RCONDV) is essentially given by norm(A)/RCONDE. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. NSIZES must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIUNIT will be !> tested. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. NTYPES must be at least !> zero. If it is zero, no randomly generated test matrices !> are tested, but and test matrices read from NIUNIT will be !> tested. If it is MAXTYP+1 and NSIZES is 1, then an !> additional type, MAXTYP+1 is defined, which is to use !> whatever matrix is in A. This is only useful if !> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVSX to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIUNIT | !> NIUNIT is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN ). !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by ZGEESX. !> |
| [out] | HT | !> HT is COMPLEX*16 array, dimension (LDA, max(NN)) !> Yet another copy of the test matrix A, modified by ZGEESX. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (max(NN)) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX*16 array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEESX only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | WTMP | !> WTMP is COMPLEX*16 array, dimension (max(NN)) !> More temporary storage for eigenvalues. !> |
| [out] | VS | !> VS is COMPLEX*16 array, dimension (LDVS, max(NN)) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1,max(NN)). !> |
| [out] | VS1 | !> VS1 is COMPLEX*16 array, dimension (LDVS, max(NN)) !> VS1 holds another copy of the computed Schur vectors. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (17) !> The values computed by the 17 tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max(1,2*NN(j)**2) for all j. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(NN)) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> <0, input parameter -INFO is incorrect !> >0, ZLATMR, CLATMS, CLATME or ZGET24 returned an error !> code and INFO is its absolute value !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 431 of file zdrvsx.f.
| subroutine zdrvvx | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| double precision | thresh, | ||
| integer | niunit, | ||
| integer | nounit, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | w1, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex*16, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| double precision, dimension( * ) | rcondv, | ||
| double precision, dimension( * ) | rcndv1, | ||
| double precision, dimension( * ) | rcdvin, | ||
| double precision, dimension( * ) | rconde, | ||
| double precision, dimension( * ) | rcnde1, | ||
| double precision, dimension( * ) | rcdein, | ||
| double precision, dimension( * ) | scale, | ||
| double precision, dimension( * ) | scale1, | ||
| double precision, dimension( 11 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | nwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZDRVVX
!> !> ZDRVVX checks the nonsymmetric eigenvalue problem expert driver !> ZGEEVX. !> !> ZDRVVX uses both test matrices generated randomly depending on !> data supplied in the calling sequence, as well as on data !> read from an input file and including precomputed condition !> numbers to which it compares the ones it computes. !> !> When ZDRVVX is called, a number of matrix () and a !> number of matrix are specified in the calling sequence. !> For each size () and each type of matrix, one matrix will be !> generated and used to test the nonsymmetric eigenroutines. For !> each matrix, 9 tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when VR, VL, RCONDV !> and RCONDE are also computed, and W(partial) denotes the !> eigenvalues computed when only some of VR, VL, RCONDV, and !> RCONDE are computed. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when VL, RCONDV !> and RCONDE are computed, and VR(partial) denotes the result !> when only some of VL and RCONDV are computed. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when VR, RCONDV !> and RCONDE are computed, and VL(partial) denotes the result !> when only some of VR and RCONDV are computed. !> !> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = !> SCALE, ILO, IHI, ABNRM (partial) !> 1/ulp otherwise !> !> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. !> (full) is when VR, VL, RCONDE and RCONDV are also computed, and !> (partial) is when some are not computed. !> !> (9) RCONDV(full) = RCONDV(partial) !> !> RCONDV(full) denotes the reciprocal condition numbers of the !> right eigenvectors computed when VR, VL and RCONDE are also !> computed. RCONDV(partial) denotes the reciprocal condition !> numbers when only some of VR, VL and RCONDE are computed. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> !> In addition, an input file will be read from logical unit number !> NIUNIT. The file contains matrices along with precomputed !> eigenvalues and reciprocal condition numbers for the eigenvalues !> and right eigenvectors. For these matrices, in addition to tests !> (1) to (9) we will compute the following two tests: !> !> (10) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right eigenvector condition number !> computed by ZGEEVX and RCDVIN (the precomputed true value) !> is supplied as input. cond(RCONDV) is the condition number of !> RCONDV, and takes errors in computing RCONDV into account, so !> that the resulting quantity should be O(ULP). cond(RCONDV) is !> essentially given by norm(A)/RCONDE. !> !> (11) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal eigenvalue condition number !> computed by ZGEEVX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. NSIZES must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIUNIT will be !> tested. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. NTYPES must be at least !> zero. If it is zero, no randomly generated test matrices !> are tested, but and test matrices read from NIUNIT will be !> tested. If it is MAXTYP+1 and NSIZES is 1, then an !> additional type, MAXTYP+1 is defined, which is to use !> whatever matrix is in A. This is only useful if !> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVVX to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIUNIT | !> NIUNIT is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, max(NN,12)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN, 12 ). (12 is the !> dimension of the largest matrix on the precomputed !> input file.) !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, max(NN,12)) !> Another copy of the test matrix A, modified by ZGEEVX. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (max(NN,12)) !> Contains the eigenvalues of A. !> |
| [out] | W1 | !> W1 is COMPLEX*16 array, dimension (max(NN,12)) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEEVX only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL, max(NN,12)) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,max(NN,12)). !> |
| [out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR, max(NN,12)) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,max(NN,12)). !> |
| [out] | LRE | !> LRE is COMPLEX*16 array, dimension (LDLRE, max(NN,12)) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,max(NN,12)) !> |
| [out] | RCONDV | !> RCONDV is DOUBLE PRECISION array, dimension (N) !> RCONDV holds the computed reciprocal condition numbers !> for eigenvectors. !> |
| [out] | RCNDV1 | !> RCNDV1 is DOUBLE PRECISION array, dimension (N) !> RCNDV1 holds more computed reciprocal condition numbers !> for eigenvectors. !> |
| [in] | RCDVIN | !> RCDVIN is DOUBLE PRECISION array, dimension (N) !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition numbers for eigenvectors to be compared with !> RCONDV. !> |
| [out] | RCONDE | !> RCONDE is DOUBLE PRECISION array, dimension (N) !> RCONDE holds the computed reciprocal condition numbers !> for eigenvalues. !> |
| [out] | RCNDE1 | !> RCNDE1 is DOUBLE PRECISION array, dimension (N) !> RCNDE1 holds more computed reciprocal condition numbers !> for eigenvalues. !> |
| [in] | RCDEIN | !> RCDEIN is DOUBLE PRECISION array, dimension (N) !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition numbers for eigenvalues to be compared with !> RCONDE. !> |
| [out] | SCALE | !> SCALE is DOUBLE PRECISION array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | SCALE1 | !> SCALE1 is DOUBLE PRECISION array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (NWORK) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (11) !> The values computed by the seven tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = !> max( 360 ,6*NN(j)+2*NN(j)**2) for all j. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*max(NN,12)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then successful exit. !> If <0, then input parameter -INFO is incorrect. !> If >0, ZLATMR, CLATMS, CLATME or ZGET23 returned an error !> code, and INFO is its absolute value. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN or 12. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 491 of file zdrvvx.f.
| subroutine zerrbd | ( | character*3 | path, |
| integer | nunit ) |
ZERRBD
!> !> ZERRBD tests the error exits for ZGEBRD, ZUNGBR, ZUNMBR, and ZBDSQR. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 53 of file zerrbd.f.
| subroutine zerrec | ( | character*3 | path, |
| integer | nunit ) |
ZERREC
!> !> ZERREC tests the error exits for the routines for eigen- condition !> estimation for DOUBLE PRECISION matrices: !> ZTRSYL, ZTREXC, ZTRSNA and ZTRSEN. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 55 of file zerrec.f.
| subroutine zerred | ( | character*3 | path, |
| integer | nunit ) |
ZERRED
!> !> ZERRED tests the error exits for the eigenvalue driver routines for !> DOUBLE COMPLEX PRECISION matrices: !> !> PATH driver description !> ---- ------ ----------- !> ZEV ZGEEV find eigenvalues/eigenvectors for nonsymmetric A !> ZES ZGEES find eigenvalues/Schur form for nonsymmetric A !> ZVX ZGEEVX ZGEEV + balancing and condition estimation !> ZSX ZGEESX ZGEES + balancing and condition estimation !> ZBD ZGESVD compute SVD of an M-by-N matrix A !> ZGESDD compute SVD of an M-by-N matrix A(by divide and !> conquer) !> ZGEJSV compute SVD of an M-by-N matrix A where M >= N !> ZGESVDX compute SVD of an M-by-N matrix A(by bisection !> and inverse iteration) !> ZGESVDQ compute SVD of an M-by-N matrix A(with a !> QR-Preconditioned ) !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 69 of file zerred.f.
| subroutine zerrgg | ( | character*3 | path, |
| integer | nunit ) |
ZERRGG
!> !> ZERRGG tests the error exits for ZGGES, ZGGESX, ZGGEV, ZGGEVX, !> ZGGES3, ZGGEV3, ZGGGLM, ZGGHRD, ZGGLSE, ZGGQRF, ZGGRQF, !> ZGGSVD3, ZGGSVP3, ZHGEQZ, ZTGEVC, ZTGEXC, ZTGSEN, ZTGSJA, !> ZTGSNA, ZTGSYL, and ZUNCSD. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 56 of file zerrgg.f.
| subroutine zerrhs | ( | character*3 | path, |
| integer | nunit ) |
ZERRHS
!> !> ZERRHS tests the error exits for ZGEBAK, CGEBAL, CGEHRD, ZUNGHR, !> ZUNMHR, ZHSEQR, CHSEIN, and ZTREVC. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 54 of file zerrhs.f.
| subroutine zerrst | ( | character*3 | path, |
| integer | nunit ) |
ZERRST
!> !> ZERRST tests the error exits for ZHETRD, ZUNGTR, CUNMTR, ZHPTRD, !> ZUNGTR, ZUPMTR, ZSTEQR, CSTEIN, ZPTEQR, ZHBTRD, !> ZHEEV, CHEEVX, CHEEVD, ZHBEV, CHBEVX, CHBEVD, !> ZHPEV, CHPEVX, CHPEVD, and ZSTEDC. !> ZHEEVD_2STAGE, ZHEEVR_2STAGE, ZHEEVX_2STAGE, !> ZHEEV_2STAGE, ZHBEV_2STAGE, ZHBEVD_2STAGE, !> ZHBEVX_2STAGE, ZHETRD_2STAGE !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 61 of file zerrst.f.
| subroutine zget02 | ( | character | trans, |
| integer | m, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | resid ) |
ZGET02
!> !> ZGET02 computes the residual for a solution of a system of linear !> equations op(A)*X = B: !> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ), !> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the !> machine epsilon. !>
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns of B, the matrix of right hand sides. !> NRHS >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The original M x N matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. If TRANS = 'N', !> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side vectors for the system of !> linear equations. !> On exit, B is overwritten with the difference B - A*X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. IF TRANS = 'N', !> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESID | !> RESID is DOUBLE PRECISION !> The maximum over the number of right hand sides of !> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ). !> |
Definition at line 132 of file zget02.f.
| subroutine zget10 | ( | integer | m, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | result ) |
ZGET10
!> !> ZGET10 compares two matrices A and B and computes the ratio !> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices A and B. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The m by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> The m by n matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (M) !> |
| [out] | RWORK | !> RWORK is COMPLEX*16 array, dimension (M) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION !> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) !> |
Definition at line 98 of file zget10.f.
| subroutine zget22 | ( | character | transa, |
| character | transe, | ||
| character | transw, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lde, * ) | e, | ||
| integer | lde, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZGET22
!> !> ZGET22 does an eigenvector check. !> !> The basic test is: !> !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> !> using the 1-norm. It also tests the normalization of E: !> !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> !> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a !> vector. The max-norm of a complex n-vector x in this case is the !> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. !>
| [in] | TRANSA | !> TRANSA is CHARACTER*1 !> Specifies whether or not A is transposed. !> = 'N': No transpose !> = 'T': Transpose !> = 'C': Conjugate transpose !> |
| [in] | TRANSE | !> TRANSE is CHARACTER*1 !> Specifies whether or not E is transposed. !> = 'N': No transpose, eigenvectors are in columns of E !> = 'T': Transpose, eigenvectors are in rows of E !> = 'C': Conjugate transpose, eigenvectors are in rows of E !> |
| [in] | TRANSW | !> TRANSW is CHARACTER*1 !> Specifies whether or not W is transposed. !> = 'N': No transpose !> = 'T': Transpose, same as TRANSW = 'N' !> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The matrix whose eigenvectors are in E. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | E | !> E is COMPLEX*16 array, dimension (LDE,N) !> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors !> are stored in the columns of E, if TRANSE = 'T' or 'C', the !> eigenvectors are stored in the rows of E. !> |
| [in] | LDE | !> LDE is INTEGER !> The leading dimension of the array E. LDE >= max(1,N). !> |
| [in] | W | !> W is COMPLEX*16 array, dimension (N) !> The eigenvalues of A. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> |
Definition at line 142 of file zget22.f.
| subroutine zget23 | ( | logical | comp, |
| integer | isrt, | ||
| character | balanc, | ||
| integer | jtype, | ||
| double precision | thresh, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | nounit, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | w1, | ||
| complex*16, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex*16, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex*16, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| double precision, dimension( * ) | rcondv, | ||
| double precision, dimension( * ) | rcndv1, | ||
| double precision, dimension( * ) | rcdvin, | ||
| double precision, dimension( * ) | rconde, | ||
| double precision, dimension( * ) | rcnde1, | ||
| double precision, dimension( * ) | rcdein, | ||
| double precision, dimension( * ) | scale, | ||
| double precision, dimension( * ) | scale1, | ||
| double precision, dimension( 11 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer | info ) |
ZGET23
!> !> ZGET23 checks the nonsymmetric eigenvalue problem driver CGEEVX. !> If COMP = .FALSE., the first 8 of the following tests will be !> performed on the input matrix A, and also test 9 if LWORK is !> sufficiently large. !> if COMP is .TRUE. all 11 tests will be performed. !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) 0 if W(full) = W(partial), 1/ulp otherwise !> !> W(full) denotes the eigenvalues computed when VR, VL, RCONDV !> and RCONDE are also computed, and W(partial) denotes the !> eigenvalues computed when only some of VR, VL, RCONDV, and !> RCONDE are computed. !> !> (6) 0 if VR(full) = VR(partial), 1/ulp otherwise !> !> VR(full) denotes the right eigenvectors computed when VL, RCONDV !> and RCONDE are computed, and VR(partial) denotes the result !> when only some of VL and RCONDV are computed. !> !> (7) 0 if VL(full) = VL(partial), 1/ulp otherwise !> !> VL(full) denotes the left eigenvectors computed when VR, RCONDV !> and RCONDE are computed, and VL(partial) denotes the result !> when only some of VR and RCONDV are computed. !> !> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = !> SCALE, ILO, IHI, ABNRM (partial) !> 1/ulp otherwise !> !> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. !> (full) is when VR, VL, RCONDE and RCONDV are also computed, and !> (partial) is when some are not computed. !> !> (9) 0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise !> !> RCONDV(full) denotes the reciprocal condition numbers of the !> right eigenvectors computed when VR, VL and RCONDE are also !> computed. RCONDV(partial) denotes the reciprocal condition !> numbers when only some of VR, VL and RCONDE are computed. !> !> (10) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right eigenvector condition number !> computed by ZGEEVX and RCDVIN (the precomputed true value) !> is supplied as input. cond(RCONDV) is the condition number of !> RCONDV, and takes errors in computing RCONDV into account, so !> that the resulting quantity should be O(ULP). cond(RCONDV) is !> essentially given by norm(A)/RCONDE. !> !> (11) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal eigenvalue condition number !> computed by ZGEEVX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !>
| [in] | COMP | !> COMP is LOGICAL !> COMP describes which input tests to perform: !> = .FALSE. if the computed condition numbers are not to !> be tested against RCDVIN and RCDEIN !> = .TRUE. if they are to be compared !> |
| [in] | ISRT | !> ISRT is INTEGER !> If COMP = .TRUE., ISRT indicates in how the eigenvalues !> corresponding to values in RCDVIN and RCDEIN are ordered: !> = 0 means the eigenvalues are sorted by !> increasing real part !> = 1 means the eigenvalues are sorted by !> increasing imaginary part !> If COMP = .FALSE., ISRT is not referenced. !> |
| [in] | BALANC | !> BALANC is CHARACTER !> Describes the balancing option to be tested. !> = 'N' for no permuting or diagonal scaling !> = 'P' for permuting but no diagonal scaling !> = 'S' for no permuting but diagonal scaling !> = 'B' for permuting and diagonal scaling !> |
| [in] | JTYPE | !> JTYPE is INTEGER !> Type of input matrix. Used to label output if error occurs. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | ISEED | !> ISEED is INTEGER array, dimension (4) !> If COMP = .FALSE., the random number generator seed !> used to produce matrix. !> If COMP = .TRUE., ISEED(1) = the number of the example. !> Used to label output if error occurs. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [in] | N | !> N is INTEGER !> The dimension of A. N must be at least 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least N. !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA,N) !> Another copy of the test matrix A, modified by ZGEEVX. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (N) !> Contains the eigenvalues of A. !> |
| [out] | W1 | !> W1 is COMPLEX*16 array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEEVX only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX*16 array, dimension (LDVL,N) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,N). !> |
| [out] | VR | !> VR is COMPLEX*16 array, dimension (LDVR,N) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,N). !> |
| [out] | LRE | !> LRE is COMPLEX*16 array, dimension (LDLRE,N) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,N). !> |
| [out] | RCONDV | !> RCONDV is DOUBLE PRECISION array, dimension (N) !> RCONDV holds the computed reciprocal condition numbers !> for eigenvectors. !> |
| [out] | RCNDV1 | !> RCNDV1 is DOUBLE PRECISION array, dimension (N) !> RCNDV1 holds more computed reciprocal condition numbers !> for eigenvectors. !> |
| [in] | RCDVIN | !> RCDVIN is DOUBLE PRECISION array, dimension (N) !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition numbers for eigenvectors to be compared with !> RCONDV. !> |
| [out] | RCONDE | !> RCONDE is DOUBLE PRECISION array, dimension (N) !> RCONDE holds the computed reciprocal condition numbers !> for eigenvalues. !> |
| [out] | RCNDE1 | !> RCNDE1 is DOUBLE PRECISION array, dimension (N) !> RCNDE1 holds more computed reciprocal condition numbers !> for eigenvalues. !> |
| [in] | RCDEIN | !> RCDEIN is DOUBLE PRECISION array, dimension (N) !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition numbers for eigenvalues to be compared with !> RCONDE. !> |
| [out] | SCALE | !> SCALE is DOUBLE PRECISION array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | SCALE1 | !> SCALE1 is DOUBLE PRECISION array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (11) !> The values computed by the 11 tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 2*N, and 2*N+N**2 if tests 9, 10 or 11 are to be performed. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> If <0, input parameter -INFO had an incorrect value. !> If >0, ZGEEVX returned an error code, the absolute !> value of which is returned. !> |
Definition at line 363 of file zget23.f.
| subroutine zget24 | ( | logical | comp, |
| integer | jtype, | ||
| double precision | thresh, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | nounit, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( lda, * ) | h, | ||
| complex*16, dimension( lda, * ) | ht, | ||
| complex*16, dimension( * ) | w, | ||
| complex*16, dimension( * ) | wt, | ||
| complex*16, dimension( * ) | wtmp, | ||
| complex*16, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| complex*16, dimension( ldvs, * ) | vs1, | ||
| double precision | rcdein, | ||
| double precision | rcdvin, | ||
| integer | nslct, | ||
| integer, dimension( * ) | islct, | ||
| integer | isrt, | ||
| double precision, dimension( 17 ) | result, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
ZGET24
!> !> ZGET24 checks the nonsymmetric eigenvalue (Schur form) problem !> expert driver ZGEESX. !> !> If COMP = .FALSE., the first 13 of the following tests will be !> be performed on the input matrix A, and also tests 14 and 15 !> if LWORK is sufficiently large. !> If COMP = .TRUE., all 17 test will be performed. !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> If workspace sufficient, also compare W with and !> without reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare T with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare VS with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> If workspace sufficient, also compare SDIM with and !> without reciprocal condition numbers !> !> (14) if RCONDE the same no matter if VS and/or RCONDV computed !> !> (15) if RCONDV the same no matter if VS and/or RCONDE computed !> !> (16) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal average eigenvalue condition number !> computed by ZGEESX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !> !> (17) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right invariant subspace condition !> number computed by ZGEESX and RCDVIN (the precomputed true !> value) is supplied as input. cond(RCONDV) is the condition !> number of RCONDV, and takes errors in computing RCONDV into !> account, so that the resulting quantity should be O(ULP). !> cond(RCONDV) is essentially given by norm(A)/RCONDE. !>
| [in] | COMP | !> COMP is LOGICAL !> COMP describes which input tests to perform: !> = .FALSE. if the computed condition numbers are not to !> be tested against RCDVIN and RCDEIN !> = .TRUE. if they are to be compared !> |
| [in] | JTYPE | !> JTYPE is INTEGER !> Type of input matrix. Used to label output if error occurs. !> |
| [in] | ISEED | !> ISEED is INTEGER array, dimension (4) !> If COMP = .FALSE., the random number generator seed !> used to produce matrix. !> If COMP = .TRUE., ISEED(1) = the number of the example. !> Used to label output if error occurs. !> |
| [in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [in] | N | !> N is INTEGER !> The dimension of A. N must be at least 0. !> |
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least N. !> |
| [out] | H | !> H is COMPLEX*16 array, dimension (LDA, N) !> Another copy of the test matrix A, modified by ZGEESX. !> |
| [out] | HT | !> HT is COMPLEX*16 array, dimension (LDA, N) !> Yet another copy of the test matrix A, modified by ZGEESX. !> |
| [out] | W | !> W is COMPLEX*16 array, dimension (N) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX*16 array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEESX only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | WTMP | !> WTMP is COMPLEX*16 array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but sorted by increasing real or imaginary part. !> |
| [out] | VS | !> VS is COMPLEX*16 array, dimension (LDVS, N) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1, N). !> |
| [out] | VS1 | !> VS1 is COMPLEX*16 array, dimension (LDVS, N) !> VS1 holds another copy of the computed Schur vectors. !> |
| [in] | RCDEIN | !> RCDEIN is DOUBLE PRECISION !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition number for the average of selected eigenvalues. !> |
| [in] | RCDVIN | !> RCDVIN is DOUBLE PRECISION !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition number for the selected right invariant subspace. !> |
| [in] | NSLCT | !> NSLCT is INTEGER !> When COMP = .TRUE. the number of selected eigenvalues !> corresponding to the precomputed values RCDEIN and RCDVIN. !> |
| [in] | ISLCT | !> ISLCT is INTEGER array, dimension (NSLCT) !> When COMP = .TRUE. ISLCT selects the eigenvalues of the !> input matrix corresponding to the precomputed values RCDEIN !> and RCDVIN. For I=1, ... ,NSLCT, if ISLCT(I) = J, then the !> eigenvalue with the J-th largest real or imaginary part is !> selected. The real part is used if ISRT = 0, and the !> imaginary part if ISRT = 1. !> Not referenced if COMP = .FALSE. !> |
| [in] | ISRT | !> ISRT is INTEGER !> When COMP = .TRUE., ISRT describes how ISLCT is used to !> choose a subset of the spectrum. !> Not referenced if COMP = .FALSE. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (17) !> The values computed by the 17 tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N*N) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK to be passed to ZGEESX. This !> must be at least 2*N, and N*(N+1)/2 if tests 14--16 are to !> be performed. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> If <0, input parameter -INFO had an incorrect value. !> If >0, ZGEESX returned an error code, the absolute !> value of which is returned. !> |
Definition at line 331 of file zget24.f.
| subroutine zget35 | ( | double precision | rmax, |
| integer | lmax, | ||
| integer | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
ZGET35
!> !> ZGET35 tests ZTRSYL, a routine for solving the Sylvester matrix !> equation !> !> op(A)*X + ISGN*X*op(B) = scale*C, !> !> A and B are assumed to be in Schur canonical form, op() represents an !> optional transpose, and ISGN can be -1 or +1. Scale is an output !> less than or equal to 1, chosen to avoid overflow in X. !> !> The test code verifies that the following residual is order 1: !> !> norm(op(A)*X + ISGN*X*op(B) - scale*C) / !> (EPS*max(norm(A),norm(B))*norm(X)) !>
| [out] | RMAX | !> RMAX is DOUBLE PRECISION !> Value of the largest test ratio. !> |
| [out] | LMAX | !> LMAX is INTEGER !> Example number where largest test ratio achieved. !> |
| [out] | NINFO | !> NINFO is INTEGER !> Number of examples where INFO is nonzero. !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 83 of file zget35.f.
| subroutine zget36 | ( | double precision | rmax, |
| integer | lmax, | ||
| integer | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
ZGET36
!> !> ZGET36 tests ZTREXC, a routine for reordering diagonal entries of a !> matrix in complex Schur form. Thus, ZLAEXC computes a unitary matrix !> Q such that !> !> Q' * T1 * Q = T2 !> !> and where one of the diagonal blocks of T1 (the one at row IFST) has !> been moved to position ILST. !> !> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2 !> is in Schur form, and that the final position of the IFST block is !> ILST. !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is DOUBLE PRECISION !> Value of the largest test ratio. !> |
| [out] | LMAX | !> LMAX is INTEGER !> Example number where largest test ratio achieved. !> |
| [out] | NINFO | !> NINFO is INTEGER !> Number of examples where INFO is nonzero. !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 84 of file zget36.f.
| subroutine zget37 | ( | double precision, dimension( 3 ) | rmax, |
| integer, dimension( 3 ) | lmax, | ||
| integer, dimension( 3 ) | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
ZGET37
!> !> ZGET37 tests ZTRSNA, a routine for estimating condition numbers of !> eigenvalues and/or right eigenvectors of a matrix. !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is DOUBLE PRECISION array, dimension (3) !> Value of the largest test ratio. !> RMAX(1) = largest ratio comparing different calls to ZTRSNA !> RMAX(2) = largest error in reciprocal condition !> numbers taking their conditioning into account !> RMAX(3) = largest error in reciprocal condition !> numbers not taking their conditioning into !> account (may be larger than RMAX(2)) !> |
| [out] | LMAX | !> LMAX is INTEGER array, dimension (3) !> LMAX(i) is example number where largest test ratio !> RMAX(i) is achieved. Also: !> If ZGEHRD returns INFO nonzero on example i, LMAX(1)=i !> If ZHSEQR returns INFO nonzero on example i, LMAX(2)=i !> If ZTRSNA returns INFO nonzero on example i, LMAX(3)=i !> |
| [out] | NINFO | !> NINFO is INTEGER array, dimension (3) !> NINFO(1) = No. of times ZGEHRD returned INFO nonzero !> NINFO(2) = No. of times ZHSEQR returned INFO nonzero !> NINFO(3) = No. of times ZTRSNA returned INFO nonzero !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number !> |
Definition at line 89 of file zget37.f.
| subroutine zget38 | ( | double precision, dimension( 3 ) | rmax, |
| integer, dimension( 3 ) | lmax, | ||
| integer, dimension( 3 ) | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
ZGET38
!> !> ZGET38 tests ZTRSEN, a routine for estimating condition numbers of a !> cluster of eigenvalues and/or its associated right invariant subspace !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is DOUBLE PRECISION array, dimension (3) !> Values of the largest test ratios. !> RMAX(1) = largest residuals from ZHST01 or comparing !> different calls to ZTRSEN !> RMAX(2) = largest error in reciprocal condition !> numbers taking their conditioning into account !> RMAX(3) = largest error in reciprocal condition !> numbers not taking their conditioning into !> account (may be larger than RMAX(2)) !> |
| [out] | LMAX | !> LMAX is INTEGER array, dimension (3) !> LMAX(i) is example number where largest test ratio !> RMAX(i) is achieved. Also: !> If ZGEHRD returns INFO nonzero on example i, LMAX(1)=i !> If ZHSEQR returns INFO nonzero on example i, LMAX(2)=i !> If ZTRSEN returns INFO nonzero on example i, LMAX(3)=i !> |
| [out] | NINFO | !> NINFO is INTEGER array, dimension (3) !> NINFO(1) = No. of times ZGEHRD returned INFO nonzero !> NINFO(2) = No. of times ZHSEQR returned INFO nonzero !> NINFO(3) = No. of times ZTRSEN returned INFO nonzero !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 90 of file zget38.f.
| subroutine zget51 | ( | integer | itype, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | result ) |
ZGET51
!> !> ZGET51 generally checks a decomposition of the form !> !> A = U B V**H !> !> where **H means conjugate transpose and U and V are unitary. !> !> Specifically, if ITYPE=1 !> !> RESULT = | A - U B V**H | / ( |A| n ulp ) !> !> If ITYPE=2, then: !> !> RESULT = | A - B | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT = | I - U U**H | / ( n ulp ) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> =1: RESULT = | A - U B V**H | / ( |A| n ulp ) !> =2: RESULT = | A - B | / ( |A| n ulp ) !> =3: RESULT = | I - U U**H | / ( n ulp ) !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZGET51 does nothing. !> It must be at least zero. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original (unfactored) matrix. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> The factored matrix. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> The unitary matrix on the left-hand side in the !> decomposition. !> Not referenced if ITYPE=2 !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV, N) !> The unitary matrix on the left-hand side in the !> decomposition. !> Not referenced if ITYPE=2 !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N**2) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION !> The values computed by the test specified by ITYPE. The !> value is currently limited to 1/ulp, to avoid overflow. !> Errors are flagged by RESULT=10/ulp. !> |
Definition at line 153 of file zget51.f.
| subroutine zget52 | ( | logical | left, |
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( lde, * ) | e, | ||
| integer | lde, | ||
| complex*16, dimension( * ) | alpha, | ||
| complex*16, dimension( * ) | beta, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZGET52
!> !> ZGET52 does an eigenvector check for the generalized eigenvalue !> problem. !> !> The basic test for right eigenvectors is: !> !> | b(i) A E(i) - a(i) B E(i) | !> RESULT(1) = max ------------------------------- !> i n ulp max( |b(i) A|, |a(i) B| ) !> !> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized !> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th !> generalized eigenvalue of m A - B. !> !> H H _ _ !> For left eigenvectors, A , B , a, and b are used. !> !> ZGET52 also tests the normalization of E. Each eigenvector is !> supposed to be normalized so that the maximum !> of its elements is 1, where in this case, !> of a complex value x is |Re(x)| + |Im(x)| ; let us call this !> maximum norm of a vector v M(v). !> If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate !> vector. The normalization test is: !> !> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp ) !> eigenvectors v(i) !> !>
| [in] | LEFT | !> LEFT is LOGICAL !> =.TRUE.: The eigenvectors in the columns of E are assumed !> to be *left* eigenvectors. !> =.FALSE.: The eigenvectors in the columns of E are assumed !> to be *right* eigenvectors. !> |
| [in] | N | !> N is INTEGER !> The size of the matrices. If it is zero, ZGET52 does !> nothing. It must be at least zero. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> The matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | E | !> E is COMPLEX*16 array, dimension (LDE, N) !> The matrix of eigenvectors. It must be O( 1 ). !> |
| [in] | LDE | !> LDE is INTEGER !> The leading dimension of E. It must be at least 1 and at !> least N. !> |
| [in] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (N) !> The values a(i) as described above, which, along with b(i), !> define the generalized eigenvalues. !> |
| [in] | BETA | !> BETA is COMPLEX*16 array, dimension (N) !> The values b(i) as described above, which, along with a(i), !> define the generalized eigenvalues. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the test described above. If A E or !> B E is likely to overflow, then RESULT(1:2) is set to !> 10 / ulp. !> |
Definition at line 160 of file zget52.f.
| subroutine zget54 | ( | integer | n, |
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( lds, * ) | s, | ||
| integer | lds, | ||
| complex*16, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | work, | ||
| double precision | result ) |
ZGET54
!> !> ZGET54 checks a generalized decomposition of the form !> !> A = U*S*V' and B = U*T* V' !> !> where ' means conjugate transpose and U and V are unitary. !> !> Specifically, !> !> RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, DGET54 does nothing. !> It must be at least zero. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original (unfactored) matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> The original (unfactored) matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | S | !> S is COMPLEX*16 array, dimension (LDS, N) !> The factored matrix S. !> |
| [in] | LDS | !> LDS is INTEGER !> The leading dimension of S. It must be at least 1 !> and at least N. !> |
| [in] | T | !> T is COMPLEX*16 array, dimension (LDT, N) !> The factored matrix T. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of T. It must be at least 1 !> and at least N. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> The orthogonal matrix on the left-hand side in the !> decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV, N) !> The orthogonal matrix on the left-hand side in the !> decomposition. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (3*N**2) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION !> The value RESULT, It is currently limited to 1/ulp, to !> avoid overflow. Errors are flagged by RESULT=10/ulp. !> |
Definition at line 154 of file zget54.f.
| subroutine zglmts | ( | integer | n, |
| integer | m, | ||
| integer | p, | ||
| complex*16, dimension( lda, * ) | a, | ||
| complex*16, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| complex*16, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | d, | ||
| complex*16, dimension( * ) | df, | ||
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( * ) | u, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | result ) |
ZGLMTS
!> !> ZGLMTS tests ZGGGLM - a subroutine for solving the generalized !> linear model problem. !>
| [in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,M) !> The N-by-M matrix A. !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,M) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF. LDA >= max(M,N). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,P) !> The N-by-P matrix A. !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,P) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF. LDB >= max(P,N). !> |
| [in] | D | !> D is COMPLEX*16 array, dimension( N ) !> On input, the left hand side of the GLM. !> |
| [out] | DF | !> DF is COMPLEX*16 array, dimension( N ) !> |
| [out] | X | !> X is COMPLEX*16 array, dimension( M ) !> solution vector X in the GLM problem. !> |
| [out] | U | !> U is COMPLEX*16 array, dimension( P ) !> solution vector U in the GLM problem. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION !> The test ratio: !> norm( d - A*x - B*u ) !> RESULT = ----------------------------------------- !> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS !> |
Definition at line 144 of file zglmts.f.
| subroutine zgqrts | ( | integer | n, |
| integer | m, | ||
| integer | p, | ||
| complex*16, dimension( lda, * ) | a, | ||
| complex*16, dimension( lda, * ) | af, | ||
| complex*16, dimension( lda, * ) | q, | ||
| complex*16, dimension( lda, * ) | r, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | taua, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| complex*16, dimension( ldb, * ) | bf, | ||
| complex*16, dimension( ldb, * ) | z, | ||
| complex*16, dimension( ldb, * ) | t, | ||
| complex*16, dimension( ldb, * ) | bwk, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | taub, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 4 ) | result ) |
ZGQRTS
!> !> ZGQRTS tests ZGGQRF, which computes the GQR factorization of an !> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. !>
| [in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,M) !> The N-by-M matrix A. !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGQRF, see CGGQRF for further details. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDA,N) !> The M-by-M unitary matrix Q. !> |
| [out] | R | !> R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q. !> LDA >= max(M,N). !> |
| [out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGGQRF. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,P) !> On entry, the N-by-P matrix A. !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGQRF, see CGGQRF for further details. !> |
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDB,P) !> The P-by-P unitary matrix Z. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDB,max(P,N)) !> |
| [out] | BWK | !> BWK is COMPLEX*16 array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T. !> LDB >= max(P,N). !> |
| [out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGRQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(N,M,P)**2. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(N,M,P)) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> |
Definition at line 174 of file zgqrts.f.
| subroutine zgrqts | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| complex*16, dimension( lda, * ) | af, | ||
| complex*16, dimension( lda, * ) | q, | ||
| complex*16, dimension( lda, * ) | r, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | taua, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| complex*16, dimension( ldb, * ) | bf, | ||
| complex*16, dimension( ldb, * ) | z, | ||
| complex*16, dimension( ldb, * ) | t, | ||
| complex*16, dimension( ldb, * ) | bwk, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | taub, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 4 ) | result ) |
ZGRQTS
!> !> ZGRQTS tests ZGGRQF, which computes the GRQ factorization of an !> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the GRQ factorization of A and B, as returned !> by ZGGRQF, see CGGRQF for further details. !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension (LDA,N) !> The N-by-N unitary matrix Q. !> |
| [out] | R | !> R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q. !> LDA >= max(M,N). !> |
| [out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGQRC. !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix A. !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGRQF, see CGGRQF for further details. !> |
| [out] | Z | !> Z is DOUBLE PRECISION array, dimension (LDB,P) !> The P-by-P unitary matrix Z. !> |
| [out] | T | !> T is COMPLEX*16 array, dimension (LDB,max(P,N)) !> |
| [out] | BWK | !> BWK is COMPLEX*16 array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T. !> LDB >= max(P,N). !> |
| [out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGRQF. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(M,P,N)**2. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> |
Definition at line 174 of file zgrqts.f.
| subroutine zgsvts3 | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| complex*16, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| complex*16, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| double precision, dimension( * ) | alpha, | ||
| double precision, dimension( * ) | beta, | ||
| complex*16, dimension( ldr, * ) | r, | ||
| integer | ldr, | ||
| integer, dimension( * ) | iwork, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 6 ) | result ) |
ZGSVTS3
!> !> ZGSVTS3 tests ZGGSVD3, which computes the GSVD of an M-by-N matrix A !> and a P-by-N matrix B: !> U'*A*Q = D1*R and V'*B*Q = D2*R. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,M) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the GSVD of A and B, as returned by ZGGSVD3, !> see ZGGSVD3 for further details. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A and AF. !> LDA >= max( 1,M ). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,P) !> On entry, the P-by-N matrix B. !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,N) !> Details of the GSVD of A and B, as returned by ZGGSVD3, !> see ZGGSVD3 for further details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B and BF. !> LDB >= max(1,P). !> |
| [out] | U | !> U is COMPLEX*16 array, dimension(LDU,M) !> The M by M unitary matrix U. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | V | !> V is COMPLEX*16 array, dimension(LDV,M) !> The P by P unitary matrix V. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P). !> |
| [out] | Q | !> Q is COMPLEX*16 array, dimension(LDQ,N) !> The N by N unitary matrix Q. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | ALPHA | !> ALPHA is DOUBLE PRECISION array, dimension (N) !> |
| [out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (N) !> !> The generalized singular value pairs of A and B, the !> ``diagonal'' matrices D1 and D2 are constructed from !> ALPHA and BETA, see subroutine ZGGSVD3 for details. !> |
| [out] | R | !> R is COMPLEX*16 array, dimension(LDQ,N) !> The upper triangular matrix R. !> |
| [in] | LDR | !> LDR is INTEGER !> The leading dimension of the array R. LDR >= max(1,N). !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, !> LWORK >= max(M,P,N)*max(M,P,N). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(M,P,N)) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (6) !> The test ratios: !> RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - U'*U ) / ( M*ULP ) !> RESULT(4) = norm( I - V'*V ) / ( P*ULP ) !> RESULT(5) = norm( I - Q'*Q ) / ( N*ULP ) !> RESULT(6) = 0 if ALPHA is in decreasing order; !> = ULPINV otherwise. !> |
Definition at line 206 of file zgsvts3.f.
| subroutine zhbt21 | ( | character | uplo, |
| integer | n, | ||
| integer | ka, | ||
| integer | ks, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZHBT21
!> !> ZHBT21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian banded, U is !> unitary, and S is diagonal (if KS=0) or symmetric !> tridiagonal (if KS=1). !> !> Specifically: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZHBT21 does nothing. !> It must be at least zero. !> |
| [in] | KA | !> KA is INTEGER !> The bandwidth of the matrix A. It must be at least zero. If !> it is larger than N-1, then max( 0, N-1 ) will be used. !> |
| [in] | KS | !> KS is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least min( KA, N-1 ). !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix S. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KS=0. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> The unitary matrix in the decomposition, expressed as a !> dense matrix (i.e., not as a product of Householder !> transformations, Givens transformations, etc.) !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> |
Definition at line 150 of file zhbt21.f.
| subroutine zhet21 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | kband, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZHET21
!> !> ZHET21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian, U is unitary, and !> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if !> KBAND=1). !> !> If ITYPE=1, then U is represented as a dense matrix; otherwise U is !> expressed as a product of Householder transformations, whose vectors !> are stored in the array and whose scaling constants are in . !> We shall use the letter to refer to the product of Householder !> transformations (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> If ITYPE=2, then: !> !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT(1) = | I - U V**H | / ( n ulp ) !> !> For ITYPE > 1, the transformation U is expressed as a product !> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)**H and each !> vector v(j) has its first j elements 0 and the remaining n-j elements !> stored in V(j+1:n,j). !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense unitary matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> 2: U expressed as a product V of Housholder transformations: !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> 3: U expressed both as a dense unitary matrix and !> as a product of Housholder transformations: !> RESULT(1) = | I - U V**H | / ( n ulp ) !> |
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZHET21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KBAND=0. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> If ITYPE=1 or 3, this contains the unitary matrix in !> the decomposition, expressed as a dense matrix. If ITYPE=2, !> then it is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV, N) !> If ITYPE=2 or 3, the columns of this array contain the !> Householder vectors used to describe the unitary matrix !> in the decomposition. If UPLO='L', then the vectors are in !> the lower triangle, if UPLO='U', then in the upper !> triangle. !> *NOTE* If ITYPE=2 or 3, V is modified and restored. The !> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') !> is set to one, and later reset to its original value, during !> the course of the calculation. !> If ITYPE=1, then it is neither referenced nor modified. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (2*N**2) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if ITYPE=1. !> |
Definition at line 212 of file zhet21.f.
| subroutine zhet22 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | m, | ||
| integer | kband, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZHET22
!> !> ZHET22 generally checks a decomposition of the form !> !> A U = U S !> !> where A is complex Hermitian, the columns of U are orthonormal, !> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if !> KBAND=1). If ITYPE=1, then U is represented as a dense matrix, !> otherwise the U is expressed as a product of Householder !> transformations, whose vectors are stored in the array and !> whose scaling constants are in we shall use the letter !> to refer to the product of Householder transformations !> (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and !> RESULT(2) = | I - U**H U | / ( m ulp ) !>
!> ITYPE INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense orthogonal matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) *and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> UPLO CHARACTER !> If UPLO='U', the upper triangle of A will be used and the !> (strictly) lower triangle will not be referenced. If !> UPLO='L', the lower triangle of A will be used and the !> (strictly) upper triangle will not be referenced. !> Not modified. !> !> N INTEGER !> The size of the matrix. If it is zero, ZHET22 does nothing. !> It must be at least zero. !> Not modified. !> !> M INTEGER !> The number of columns of U. If it is zero, ZHET22 does !> nothing. It must be at least zero. !> Not modified. !> !> KBAND INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , N) !> The original (unfactored) matrix. It is assumed to be !> symmetric, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> Not modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> Not modified. !> !> D DOUBLE PRECISION array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> Not modified. !> !> E DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc. !> Not referenced if KBAND=0. !> Not modified. !> !> U COMPLEX*16 array, dimension (LDU, N) !> If ITYPE=1, this contains the orthogonal matrix in !> the decomposition, expressed as a dense matrix. !> Not modified. !> !> LDU INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> Not modified. !> !> V COMPLEX*16 array, dimension (LDV, N) !> If ITYPE=2 or 3, the lower triangle of this array contains !> the Householder vectors used to describe the orthogonal !> matrix in the decomposition. If ITYPE=1, then it is not !> referenced. !> Not modified. !> !> LDV INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> Not modified. !> !> TAU COMPLEX*16 array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> Not modified. !> !> WORK COMPLEX*16 array, dimension (2*N**2) !> Workspace. !> Modified. !> !> RWORK DOUBLE PRECISION array, dimension (N) !> Workspace. !> Modified. !> !> RESULT DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if LDU is at least N. !> Modified. !>
Definition at line 159 of file zhet22.f.
| subroutine zhpt21 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | kband, | ||
| complex*16, dimension( * ) | ap, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | vp, | ||
| complex*16, dimension( * ) | tau, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZHPT21
!> !> ZHPT21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian, U is !> unitary, and S is diagonal (if KBAND=0) or (real) symmetric !> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as !> a dense matrix, otherwise the U is expressed as a product of !> Householder transformations, whose vectors are stored in the !> array and whose scaling constants are in we shall !> use the letter to refer to the product of Householder !> transformations (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> If ITYPE=2, then: !> !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT(1) = | I - U V**H | / ( n ulp ) !> !> Packed storage means that, for example, if UPLO='U', then the columns !> of the upper triangle of A are stored one after another, so that !> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if !> UPLO='L', then the columns of the lower triangle of A are stored one !> after another in AP, so that A(j+1,j+1) immediately follows A(n,j) !> in the array AP. This means that A(i,j) is stored in: !> !> AP( i + j*(j-1)/2 ) if UPLO='U' !> !> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' !> !> The array VP bears the same relation to the matrix V that A does to !> AP. !> !> For ITYPE > 1, the transformation U is expressed as a product !> of Householder transformations: !> !> If UPLO='U', then V = H(n-1)...H(1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), !> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), !> the j-th element is 1, and the last n-j elements are 0. !> !> If UPLO='L', then V = H(1)...H(n-1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the !> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e., !> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense unitary matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> 2: U expressed as a product V of Housholder transformations: !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> 3: U expressed both as a dense unitary matrix and !> as a product of Housholder transformations: !> RESULT(1) = | I - U V**H | / ( n ulp ) !> |
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZHPT21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and contains the columns of just the upper !> triangle (UPLO='U') or only the lower triangle (UPLO='L'), !> packed one after another. !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KBAND=0. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> If ITYPE=1 or 3, this contains the unitary matrix in !> the decomposition, expressed as a dense matrix. If ITYPE=2, !> then it is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | VP | !> VP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> If ITYPE=2 or 3, the columns of this array contain the !> Householder vectors used to describe the unitary matrix !> in the decomposition, as described in purpose. !> *NOTE* If ITYPE=2 or 3, V is modified and restored. The !> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') !> is set to one, and later reset to its original value, during !> the course of the calculation. !> If ITYPE=1, then it is neither referenced nor modified. !> |
| [in] | TAU | !> TAU is COMPLEX*16 array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N**2) !> Workspace. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> Workspace. !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if ITYPE=1. !> |
Definition at line 226 of file zhpt21.f.
| subroutine zhst01 | ( | integer | n, |
| integer | ilo, | ||
| integer | ihi, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldh, * ) | h, | ||
| integer | ldh, | ||
| complex*16, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZHST01
!> !> ZHST01 tests the reduction of a general matrix A to upper Hessenberg !> form: A = Q*H*Q'. Two test ratios are computed; !> !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> !> The matrix Q is assumed to be given explicitly as it would be !> following ZGEHRD + ZUNGHR. !> !> In this version, ILO and IHI are not used, but they could be used !> to save some work if this is desired. !>
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> A is assumed to be upper triangular in rows and columns !> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in !> rows and columns ILO+1:IHI. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The original n by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | H | !> H is COMPLEX*16 array, dimension (LDH,N) !> The upper Hessenberg matrix H from the reduction A = Q*H*Q' !> as computed by ZGEHRD. H is assumed to be zero below the !> first subdiagonal. !> |
| [in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
| [in] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> The orthogonal matrix Q from the reduction A = Q*H*Q' as !> computed by ZGEHRD + ZUNGHR. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= 2*N*N. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> |
Definition at line 138 of file zhst01.f.
| subroutine zlarfy | ( | character | uplo, |
| integer | n, | ||
| complex*16, dimension( * ) | v, | ||
| integer | incv, | ||
| complex*16 | tau, | ||
| complex*16, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex*16, dimension( * ) | work ) |
ZLARFY
!> !> ZLARFY applies an elementary reflector, or Householder matrix, H, !> to an n x n Hermitian matrix C, from both the left and the right. !> !> H is represented in the form !> !> H = I - tau * v * v' !> !> where tau is a scalar and v is a vector. !> !> If tau is zero, then H is taken to be the unit matrix. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix C is stored. !> = 'U': Upper triangle !> = 'L': Lower triangle !> |
| [in] | N | !> N is INTEGER !> The number of rows and columns of the matrix C. N >= 0. !> |
| [in] | V | !> V is COMPLEX*16 array, dimension !> (1 + (N-1)*abs(INCV)) !> The vector v as described above. !> |
| [in] | INCV | !> INCV is INTEGER !> The increment between successive elements of v. INCV must !> not be zero. !> |
| [in] | TAU | !> TAU is COMPLEX*16 !> The value tau as described above. !> |
| [in,out] | C | !> C is COMPLEX*16 array, dimension (LDC, N) !> On entry, the matrix C. !> On exit, C is overwritten by H * C * H'. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max( 1, N ). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
Definition at line 107 of file zlarfy.f.
| subroutine zlarhs | ( | character*3 | path, |
| character | xtype, | ||
| character | uplo, | ||
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | kl, | ||
| integer | ku, | ||
| integer | nrhs, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | info ) |
ZLARHS
!> !> ZLARHS chooses a set of NRHS random solution vectors and sets !> up the right hand sides for the linear system !> op(A) * X = B, !> where op(A) = A, A**T, or A**H, depending on TRANS. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The type of the complex matrix A. PATH may be given in any !> combination of upper and lower case. Valid paths include !> xGE: General m x n matrix !> xGB: General banded matrix !> xPO: Hermitian positive definite, 2-D storage !> xPP: Hermitian positive definite packed !> xPB: Hermitian positive definite banded !> xHE: Hermitian indefinite, 2-D storage !> xHP: Hermitian indefinite packed !> xHB: Hermitian indefinite banded !> xSY: Symmetric indefinite, 2-D storage !> xSP: Symmetric indefinite packed !> xSB: Symmetric indefinite banded !> xTR: Triangular !> xTP: Triangular packed !> xTB: Triangular banded !> xQR: General m x n matrix !> xLQ: General m x n matrix !> xQL: General m x n matrix !> xRQ: General m x n matrix !> where the leading character indicates the precision. !> |
| [in] | XTYPE | !> XTYPE is CHARACTER*1 !> Specifies how the exact solution X will be determined: !> = 'N': New solution; generate a random X. !> = 'C': Computed; use value of X on entry. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Used only if A is symmetric or triangular; specifies whether !> the upper or lower triangular part of the matrix A is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Used only if A is nonsymmetric; specifies the operation !> applied to the matrix A. !> = 'N': B := A * X (No transpose) !> = 'T': B := A**T * X (Transpose) !> = 'C': B := A**H * X (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
| [in] | KL | !> KL is INTEGER !> Used only if A is a band matrix; specifies the number of !> subdiagonals of A if A is a general band matrix or if A is !> symmetric or triangular and UPLO = 'L'; specifies the number !> of superdiagonals of A if A is symmetric or triangular and !> UPLO = 'U'. 0 <= KL <= M-1. !> |
| [in] | KU | !> KU is INTEGER !> Used only if A is a general band matrix or if A is !> triangular. !> !> If PATH = xGB, specifies the number of superdiagonals of A, !> and 0 <= KU <= N-1. !> !> If PATH = xTR, xTP, or xTB, specifies whether or not the !> matrix has unit diagonal: !> = 1: matrix has non-unit diagonal (default) !> = 2: matrix has unit diagonal !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand side vectors in the system A*X = B. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The test matrix whose type is given by PATH. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If PATH = xGB, LDA >= KL+KU+1. !> If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1. !> Otherwise, LDA >= max(1,M). !> |
| [in,out] | X | !> X is or output) COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, if XTYPE = 'C' (for 'Computed'), then X contains !> the exact solution to the system of linear equations. !> On exit, if XTYPE = 'N' (for 'New'), then X is initialized !> with random values. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. If TRANS = 'N', !> LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M). !> |
| [out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side vector(s) for the system of equations, !> computed from B = op(A) * X, where op(A) is determined by !> TRANS. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. If TRANS = 'N', !> LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N). !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> The seed vector for the random number generator (used in !> ZLATMS). Modified on exit. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 206 of file zlarhs.f.
| subroutine zlatm4 | ( | integer | itype, |
| integer | n, | ||
| integer | nz1, | ||
| integer | nz2, | ||
| logical | rsign, | ||
| double precision | amagn, | ||
| double precision | rcond, | ||
| double precision | triang, | ||
| integer | idist, | ||
| integer, dimension( 4 ) | iseed, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda ) |
ZLATM4
!> !> ZLATM4 generates basic square matrices, which may later be !> multiplied by others in order to produce test matrices. It is !> intended mainly to be used to test the generalized eigenvalue !> routines. !> !> It first generates the diagonal and (possibly) subdiagonal, !> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND. !> It then fills in the upper triangle with random numbers, if TRIANG is !> non-zero. !>
| [in] | ITYPE | !> ITYPE is INTEGER !> The of matrix on the diagonal and sub-diagonal. !> If ITYPE < 0, then type abs(ITYPE) is generated and then !> swapped end for end (A(I,J) := A'(N-J,N-I).) See also !> the description of AMAGN and RSIGN. !> !> Special types: !> = 0: the zero matrix. !> = 1: the identity. !> = 2: a transposed Jordan block. !> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block !> followed by a k x k identity block, where k=(N-1)/2. !> If N is even, then k=(N-2)/2, and a zero diagonal entry !> is tacked onto the end. !> !> Diagonal types. The diagonal consists of NZ1 zeros, then !> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE !> specifies the nonzero diagonal entries as follows: !> = 4: 1, ..., k !> = 5: 1, RCOND, ..., RCOND !> = 6: 1, ..., 1, RCOND !> = 7: 1, a, a^2, ..., a^(k-1)=RCOND !> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND !> = 9: random numbers chosen from (RCOND,1) !> = 10: random numbers with distribution IDIST (see ZLARND.) !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. !> |
| [in] | NZ1 | !> NZ1 is INTEGER !> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will !> be zero. !> |
| [in] | NZ2 | !> NZ2 is INTEGER !> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will !> be zero. !> |
| [in] | RSIGN | !> RSIGN is LOGICAL !> = .TRUE.: The diagonal and subdiagonal entries will be !> multiplied by random numbers of magnitude 1. !> = .FALSE.: The diagonal and subdiagonal entries will be !> left as they are (usually non-negative real.) !> |
| [in] | AMAGN | !> AMAGN is DOUBLE PRECISION !> The diagonal and subdiagonal entries will be multiplied by !> AMAGN. !> |
| [in] | RCOND | !> RCOND is DOUBLE PRECISION !> If abs(ITYPE) > 4, then the smallest diagonal entry will be !> RCOND. RCOND must be between 0 and 1. !> |
| [in] | TRIANG | !> TRIANG is DOUBLE PRECISION !> The entries above the diagonal will be random numbers with !> magnitude bounded by TRIANG (i.e., random numbers multiplied !> by TRIANG.) !> |
| [in] | IDIST | !> IDIST is INTEGER !> On entry, DIST specifies the type of distribution to be used !> to generate a random matrix . !> = 1: real and imaginary parts each UNIFORM( 0, 1 ) !> = 2: real and imaginary parts each UNIFORM( -1, 1 ) !> = 3: real and imaginary parts each NORMAL( 0, 1 ) !> = 4: complex number uniform in DISK( 0, 1 ) !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The values of ISEED are changed on exit, and can !> be used in the next call to ZLATM4 to continue the same !> random number sequence. !> Note: ISEED(4) should be odd, for the random number generator !> used at present. !> |
| [out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> Array to be computed. !> |
| [in] | LDA | !> LDA is INTEGER !> Leading dimension of A. Must be at least 1 and at least N. !> |
Definition at line 169 of file zlatm4.f.
ZLCTES
!> !> ZLCTES returns .TRUE. if the eigenvalue Z/D is to be selected !> (specifically, in this subroutine, if the real part of the !> eigenvalue is negative), and otherwise it returns .FALSE.. !> !> It is used by the test routine ZDRGES to test whether the driver !> routine ZGGES successfully sorts eigenvalues. !>
| [in] | Z | !> Z is COMPLEX*16 !> The numerator part of a complex eigenvalue Z/D. !> |
| [in] | D | !> D is COMPLEX*16 !> The denominator part of a complex eigenvalue Z/D. !> |
Definition at line 57 of file zlctes.f.
ZLCTSX
!> !> This function is used to determine what eigenvalues will be !> selected. If this is part of the test driver ZDRGSX, do not !> change the code UNLESS you are testing input examples and not !> using the built-in examples. !>
| [in] | ALPHA | !> ALPHA is COMPLEX*16 !> |
| [in] | BETA | !> BETA is COMPLEX*16 !> !> parameters to decide whether the pair (ALPHA, BETA) is !> selected. !> |
Definition at line 56 of file zlctsx.f.
| subroutine zlsets | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| complex*16, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| complex*16, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex*16, dimension( * ) | c, | ||
| complex*16, dimension( * ) | cf, | ||
| complex*16, dimension( * ) | d, | ||
| complex*16, dimension( * ) | df, | ||
| complex*16, dimension( * ) | x, | ||
| complex*16, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZLSETS
!> !> ZLSETS tests ZGGLSE - a subroutine for solving linear equality !> constrained least square problem (LSE). !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB,N) !> The P-by-N matrix A. !> |
| [out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, V and S. !> LDB >= max(P,N). !> |
| [in] | C | !> C is COMPLEX*16 array, dimension( M ) !> the vector C in the LSE problem. !> |
| [out] | CF | !> CF is COMPLEX*16 array, dimension( M ) !> |
| [in] | D | !> D is COMPLEX*16 array, dimension( P ) !> the vector D in the LSE problem. !> |
| [out] | DF | !> DF is COMPLEX*16 array, dimension( P ) !> |
| [out] | X | !> X is COMPLEX*16 array, dimension( N ) !> solution vector X in the LSE problem. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS !> RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS !> |
Definition at line 149 of file zlsets.f.
| subroutine zsbmv | ( | character | uplo, |
| integer | n, | ||
| integer | k, | ||
| complex*16 | alpha, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( * ) | x, | ||
| integer | incx, | ||
| complex*16 | beta, | ||
| complex*16, dimension( * ) | y, | ||
| integer | incy ) |
ZSBMV
!> !> ZSBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric band matrix, with k super-diagonals. !>
!> UPLO - CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !> !> Unchanged on exit. !> !> N - INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !> !> K - INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !> Unchanged on exit. !> !> ALPHA - COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !> !> A - COMPLEX*16 array, dimension( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Unchanged on exit. !> !> LDA - INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !> Unchanged on exit. !> !> X - COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !> !> INCX - INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !> !> BETA - COMPLEX*16 !> On entry, BETA specifies the scalar beta. !> Unchanged on exit. !> !> Y - COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !> !> INCY - INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !>
Definition at line 150 of file zsbmv.f.
| subroutine zsgt01 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | m, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex*16, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| double precision, dimension( * ) | d, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( * ) | result ) |
ZSGT01
!> !> CDGT01 checks a decomposition of the form !> !> A Z = B Z D or !> A B Z = Z D or !> B A Z = Z D !> !> where A is a Hermitian matrix, B is Hermitian positive definite, !> Z is unitary, and D is diagonal. !> !> One of the following test ratios is computed: !> !> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> The form of the Hermitian generalized eigenproblem. !> = 1: A*z = (lambda)*B*z !> = 2: A*B*z = (lambda)*z !> = 3: B*A*z = (lambda)*z !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrices A and B is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of eigenvalues found. M >= 0. !> |
| [in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original Hermitian matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> The original Hermitian positive definite matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, M) !> The computed eigenvectors of the generalized eigenproblem. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= max(1,N). !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (M) !> The computed eigenvalues of the generalized eigenproblem. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N*N) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (1) !> The test ratio as described above. !> |
Definition at line 150 of file zsgt01.f.
| logical function zslect | ( | complex*16 | z | ) |
ZSLECT
!> !> ZSLECT returns .TRUE. if the eigenvalue Z is to be selected, !> otherwise it returns .FALSE. !> It is used by ZCHK41 to test if ZGEES successfully sorts eigenvalues, !> and by ZCHK43 to test if ZGEESX successfully sorts eigenvalues. !> !> The common block /SSLCT/ controls how eigenvalues are selected. !> If SELOPT = 0, then ZSLECT return .TRUE. when real(Z) is less than !> zero, and .FALSE. otherwise. !> If SELOPT is at least 1, ZSLECT returns SELVAL(SELOPT) and adds 1 !> to SELOPT, cycling back to 1 at SELMAX. !>
| [in] | Z | !> Z is COMPLEX*16 !> The eigenvalue Z. !> |
Definition at line 55 of file zslect.f.
| subroutine zstt21 | ( | integer | n, |
| integer | kband, | ||
| double precision, dimension( * ) | ad, | ||
| double precision, dimension( * ) | ae, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZSTT21
!> !> ZSTT21 checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is real symmetric tridiagonal, !> U is unitary, and S is real and diagonal (if KBAND=0) or symmetric !> tridiagonal (if KBAND=1). Two tests are performed: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) !> !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZSTT21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | AD | !> AD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be real symmetric tridiagonal. !> |
| [in] | AE | !> AE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be symmetric tridiagonal. AE(1) is the (1,2) !> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. !> |
| [in] | SD | !> SD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the real (symmetric tri-) diagonal matrix S. !> |
| [in] | SE | !> SE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the !> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) !> element, etc. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU, N) !> The unitary matrix in the decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. !> |
Definition at line 131 of file zstt21.f.
| subroutine zstt22 | ( | integer | n, |
| integer | m, | ||
| integer | kband, | ||
| double precision, dimension( * ) | ad, | ||
| double precision, dimension( * ) | ae, | ||
| double precision, dimension( * ) | sd, | ||
| double precision, dimension( * ) | se, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldwork, * ) | work, | ||
| integer | ldwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision, dimension( 2 ) | result ) |
ZSTT22
!> !> ZSTT22 checks a set of M eigenvalues and eigenvectors, !> !> A U = U S !> !> where A is Hermitian tridiagonal, the columns of U are unitary, !> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). !> Two tests are performed: !> !> RESULT(1) = | U* A U - S | / ( |A| m ulp ) !> !> RESULT(2) = | I - U*U | / ( m ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, ZSTT22 does nothing. !> It must be at least zero. !> |
| [in] | M | !> M is INTEGER !> The number of eigenpairs to check. If it is zero, ZSTT22 !> does nothing. It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is Hermitian tri-diagonal. !> |
| [in] | AD | !> AD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be Hermitian tridiagonal. !> |
| [in] | AE | !> AE is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be Hermitian tridiagonal. AE(1) is ignored, !> AE(2) is the (1,2) and (2,1) element, etc. !> |
| [in] | SD | !> SD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (Hermitian tri-) diagonal matrix S. !> |
| [in] | SE | !> SE is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the (Hermitian tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is !> ignored, SE(2) is the (1,2) and (2,1) element, etc. !> |
| [in] | U | !> U is DOUBLE PRECISION array, dimension (LDU, N) !> The unitary matrix in the decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LDWORK, M+1) !> |
| [in] | LDWORK | !> LDWORK is INTEGER !> The leading dimension of WORK. LDWORK must be at least !> max(1,M). !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> |
Definition at line 143 of file zstt22.f.
| subroutine zunt01 | ( | character | rowcol, |
| integer | m, | ||
| integer | n, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | resid ) |
ZUNT01
!> !> ZUNT01 checks that the matrix U is unitary by computing the ratio !> !> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', !> or !> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. !> !> Alternatively, if there isn't sufficient workspace to form !> I - U*U' or I - U'*U, the ratio is computed as !> !> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', !> or !> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. !> !> where EPS is the machine precision. ROWCOL is used only if m = n; !> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is !> assumed to be 'R'. !>
| [in] | ROWCOL | !> ROWCOL is CHARACTER !> Specifies whether the rows or columns of U should be checked !> for orthogonality. Used only if M = N. !> = 'R': Check for orthogonal rows of U !> = 'C': Check for orthogonal columns of U !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix U. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix U. !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU,N) !> The unitary matrix U. U is checked for orthogonal columns !> if m > n or if m = n and ROWCOL = 'C'. U is checked for !> orthogonal rows if m < n or if m = n and ROWCOL = 'R'. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. For best performance, LWORK !> should be at least N*N if ROWCOL = 'C' or M*M if !> ROWCOL = 'R', but the test will be done even if LWORK is 0. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (min(M,N)) !> Used only if LWORK is large enough to use the Level 3 BLAS !> code. !> |
| [out] | RESID | !> RESID is DOUBLE PRECISION !> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or !> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. !> |
Definition at line 124 of file zunt01.f.
| subroutine zunt03 | ( | character*( * ) | rc, |
| integer | mu, | ||
| integer | mv, | ||
| integer | n, | ||
| integer | k, | ||
| complex*16, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex*16, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| double precision | result, | ||
| integer | info ) |
ZUNT03
!> !> ZUNT03 compares two unitary matrices U and V to see if their !> corresponding rows or columns span the same spaces. The rows are !> checked if RC = 'R', and the columns are checked if RC = 'C'. !> !> RESULT is the maximum of !> !> | V*V' - I | / ( MV ulp ), if RC = 'R', or !> !> | V'*V - I | / ( MV ulp ), if RC = 'C', !> !> and the maximum over rows (or columns) 1 to K of !> !> | U(i) - S*V(i) |/ ( N ulp ) !> !> where abs(S) = 1 (chosen to minimize the expression), U(i) is the !> i-th row (column) of U, and V(i) is the i-th row (column) of V. !>
| [in] | RC | !> RC is CHARACTER*1 !> If RC = 'R' the rows of U and V are to be compared. !> If RC = 'C' the columns of U and V are to be compared. !> |
| [in] | MU | !> MU is INTEGER !> The number of rows of U if RC = 'R', and the number of !> columns if RC = 'C'. If MU = 0 ZUNT03 does nothing. !> MU must be at least zero. !> |
| [in] | MV | !> MV is INTEGER !> The number of rows of V if RC = 'R', and the number of !> columns if RC = 'C'. If MV = 0 ZUNT03 does nothing. !> MV must be at least zero. !> |
| [in] | N | !> N is INTEGER !> If RC = 'R', the number of columns in the matrices U and V, !> and if RC = 'C', the number of rows in U and V. If N = 0 !> ZUNT03 does nothing. N must be at least zero. !> |
| [in] | K | !> K is INTEGER !> The number of rows or columns of U and V to compare. !> 0 <= K <= max(MU,MV). !> |
| [in] | U | !> U is COMPLEX*16 array, dimension (LDU,N) !> The first matrix to compare. If RC = 'R', U is MU by N, and !> if RC = 'C', U is N by MU. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. If RC = 'R', LDU >= max(1,MU), !> and if RC = 'C', LDU >= max(1,N). !> |
| [in] | V | !> V is COMPLEX*16 array, dimension (LDV,N) !> The second matrix to compare. If RC = 'R', V is MV by N, and !> if RC = 'C', V is N by MV. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. If RC = 'R', LDV >= max(1,MV), !> and if RC = 'C', LDV >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. For best performance, LWORK !> should be at least N*N if RC = 'C' or M*M if RC = 'R', but !> the tests will be done even if LWORK is 0. !> |
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(MV,N)) !> |
| [out] | RESULT | !> RESULT is DOUBLE PRECISION !> The value computed by the test described above. RESULT is !> limited to 1/ulp to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> 0 indicates a successful exit !> -k indicates the k-th parameter had an illegal value !> |
Definition at line 160 of file zunt03.f.